- -

Polyhedral analysis and a new algorithm for the length constrained K-drones rural postman problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyhedral analysis and a new algorithm for the length constrained K-drones rural postman problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campbell, James es_ES
dc.contributor.author Corberán, Ángel es_ES
dc.contributor.author Plana, Isaac es_ES
dc.contributor.author Sanchís Llopis, José María es_ES
dc.contributor.author Segura-Martínez, Paula es_ES
dc.date.accessioned 2023-11-28T19:01:56Z
dc.date.available 2023-11-28T19:01:56Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 0926-6003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200285
dc.description.abstract [EN] The Length Constrained K¿Drones Rural Postman Problem (LC K¿DRPP) is a continuous optimization problem where a set of curved or straight lines of a network have to be traversed, in order to be serviced, by a fleet of homogeneous drones, with total minimum cost. Since the range and endurance of drones is limited, we consider here that the length of each route is constrained to a given limit L. Drones are not restricted to travel on the network, and they can enter and exit a line through any of its points, servicing only a portion of that line. Therefore, shorter solutions are obtained with ¿aerial¿ drones than with ¿ground¿ vehicles that are restricted to the network. If a LC K¿DRPP instance is digitized by approximating each line with a polygonal chain, and it is assumed that drones can only enter and exit a line through the points of the chain, an instance of the Length Constrained K¿vehicles Rural Postman Problem (LC K¿RPP) is obtained. This is a discrete arc routing problem, and therefore can be solved with combinatorial optimization techniques. However, when the number of points in each polygonal chain is very large, the LC K¿RPP instance can be so large that it is very difficult to solve, even for heuristic algorithms. Therefore, it is necessary to implement a procedure that generates smaller LC K¿ RPP instances by approximating each line by a few but ¿significant¿ points and segments. In this paper, we present a new formulation for the LC K¿RPP with two binary variables for each edge and each drone representing the first and second traversals of the edge, respectively. We make a polyhedral study of the set of solutions of a relaxed formulation and prove that several families of inequalities induce facets of the polyhedron. We design and implement a branch¿and¿cut algorithm for the LC K¿RPP that incorporates the separation of these inequalities. This B &C is the main routine of an iterative algorithm that, by solving a LC K¿RPP instance at each step, finds good solutions for the original LC K¿DRPP. The computational results show that the proposed method is effective in finding good solutions for LC K¿DRPP, and that the branch¿and¿cut algorithm for the LC K¿RPP outperforms the only published exact method for this problem. es_ES
dc.description.sponsorship The work by Ángel Corberán, Isaac Plana, José M. Sanchis, and Paula Segura was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICIU) and Fondo Social Europeo (FSE) through project PGC2018-099428-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Computational Optimization and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Drones es_ES
dc.subject Rural postman problem es_ES
dc.subject Length constraints es_ES
dc.subject Facets es_ES
dc.subject Branch and cut es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Polyhedral analysis and a new algorithm for the length constrained K-drones rural postman problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10589-022-00383-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099428-B-I00/ES/ANALISIS Y RESOLUCION DE PROBLEMAS DE RUTAS DE VEHICULOS Y LOCALIZACION DE SERVICIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2019-087383//AYUDA PREDOCTORAL AEI-SEGURA MARTINEZ. PROYECTO: ANALISIS Y RESOLUCION DE PROBLEMAS DE RUTAS DE VEHICULOS Y LOCALIZACION DE SERVICIOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Campbell, J.; Corberán, Á.; Plana, I.; Sanchís Llopis, JM.; Segura-Martínez, P. (2022). Polyhedral analysis and a new algorithm for the length constrained K-drones rural postman problem. Computational Optimization and Applications. 83(1):67-109. https://doi.org/10.1007/s10589-022-00383-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10589-022-00383-x es_ES
dc.description.upvformatpinicio 67 es_ES
dc.description.upvformatpfin 109 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\491686 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Amorosi, L., Puerto, J., Valverde, C.: Coordinating drones with mothership vehicles: the mothership and drone routing problem with graphs. Comput. Operations Res. (2021). https://doi.org/10.1016/j.cor.2021.105445 es_ES
dc.description.references Barahona, F., Grø"=ötschel, M.: On the cycle polytope of a binary matroid. J. Comb. Theory B 40, 40–62 (1986) es_ES
dc.description.references Benavent, E., Corberán, Á., Sanchis, J.M.: Linear Programming based methods for solving arc routing problems. In: Dror, M. (ed.) Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers, Alphen aan den Rijn (2000) es_ES
dc.description.references Campbell, J.F., Corberán, Á., Plana, I., Sanchis, J.M.: Drone arc routing problems. Networks 72, 543–559 (2018) es_ES
dc.description.references Campbell, J.F., Corberán, Á., Plana, I., Sanchis, J.M., Segura, P.: Solving the length constrained K-drones rural postman problem. Eur. J. Operation. Res. 292, 60–72 (2021) es_ES
dc.description.references Chapa, S.: “Railroad Commission launches drone fleet for inspections”, Houston Chronicle, May 12 (2020). https://www.houstonchronicle.com/business/energy/article/Railroad-Commission-launches-drone-fleet-for-15264009.php es_ES
dc.description.references Corberán, Á., Eglese, R., Hasle, G., Plana, I., Sanchis, J.M.: Arc routing problems: a review of the past, present, and future. Networks 77, 88–115 (2021) es_ES
dc.description.references Corberán, Á., Laporte, G. (eds.): Arc Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization, SIAM, Philadelphia (2014) es_ES
dc.description.references Corberán, Á., Letchford, A.N., Sanchis, J.M.: A Cutting-plane Algorithm for the General Routing Problem. Math. Program. 90, 291–316 (2001) es_ES
dc.description.references Corberán, Á., Plana, I., Rodríguez-Chía, A.M., Sanchis, J.M.: A branch-and-cut algorithm for the maximum benefit Chinese postman problem. Math. Program. 141, 21–48 (2013) es_ES
dc.description.references Corberán, Á., Plana, I., Sanchis, J.M.: A branch & cut algorithm for the windy general routing problem and special cases. Networks 49, 245–257 (2007) es_ES
dc.description.references Corberán, Á., Plana, I., Sanchis, J.M., Segura, P.: “Polyhedral study of a new formulation for the Rural Postman Problem”, Internal Report. https://doi.org/10.13140/RG.2.2.36748.85122/1.(2021). Available at http://www.uv.es/corberan/reports.htm es_ES
dc.description.references Corberán, Á., Romero, A., Sanchis, J.M.: The mixed general routing polyhedron. Math. Program. 96, 103–137 (2003) es_ES
dc.description.references Corberán, Á., Sanchis, J.M.: A polyhedral approach to the rural postman problem. Eur. J. Operation. Res. 79, 95–114 (1994) es_ES
dc.description.references Corberán, Á., Sanchis, J.M.: The general routing problem polyhedron: facets from the RPP and GTSP polyhedra. Eur. J. Operation. Res. 108, 538–550 (1998) es_ES
dc.description.references Durdevic, P., Ortiz-Arroyo, D., Li, S., Yang, Z.: Vision aided navigation of a quad-rotor for autonomous wind-farm inspection. IFAC-PapersOnLine 52(8), 61–66 (2019) es_ES
dc.description.references Garfinkel, R.S., Webb, I.R.: On crossings, the crossing postman problem, and the rural postman problem. Networks 34, 173–180 (1999) es_ES
dc.description.references Ghiani, G., Laporte, G.: A branch-and-cut algorithm for the Undirected Rural Postman Problem. Math. Program. 87, 467–481 (2000) es_ES
dc.description.references Graetz, T., Lo, S.: How BNSF is leading the way for DRONE use in rail: an interview with Todd Graetz director TS, telecomm, technology services, BNSF. Def. Transp. J. 74, 18–23 (2018) es_ES
dc.description.references Hierholzer, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6, 30–32 (1873) es_ES
dc.description.references Jones, D., Gates, A., Huvenne, V., Phillips, A., Bett, B.: Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci. Total Environ. 668, 835–853 (2019) es_ES
dc.description.references Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K., Lewis, D.D., Tse, Z.: State-of-the-art technologies for UAV inspections. IET Radar Sonar Navig 12, 151–164 (2018) es_ES
dc.description.references Karaduman, M., Çinar, A., Eren, H.: UAV traffic patrolling via road detection and tracking in anonymous aerial video frames. J. Intell. Robot Syst. 95, 675–690 (2019) es_ES
dc.description.references Knight, R.: “UAV Inspection At The Biggest Oil Rig In The World”. December 2, 2019. https://www.microdrones.com/en/content/uav-inspection-at-the-biggest-oil-rig-in-the-world/ es_ES
dc.description.references Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut-sets and b-matchings revisited. SIAM J. Discr. Math. 22, 1480–1487 (2008) es_ES
dc.description.references Li, M., Zhen, L., Wang, S., Lu, W., Qu, X.: Unmanned aerial vehicle scheduling problem for traffic monitoring. Comput. Ind. Eng. 122, 15–23 (2018) es_ES
dc.description.references Liu, Y., Shi, J., Liu, Z., Huang, J., Zhou, T.: Two-layer routing for high-voltage powerline inspection by cooperated ground vehicle and drone. Energies 12, 1385 (2019) es_ES
dc.description.references Luo, H., Zhang, P., Wang, J., Wang, G., Meng, F.: Traffic patrolling routing problem with drones in an urban road system. Sensors 19, 5164 (2019) es_ES
dc.description.references Mansouri, S., Kanellakis, C., Fresk, E., Komuiniak, D., Nikolakopoulos, G.: Cooperative coverage path planning for visual inspection. Control Eng. Pract. 74, 118–131 (2018) es_ES
dc.description.references Mourão, M.C., Pinto, L.: An updated annotated bibliography on arc routing problems. Networks 70, 144–194 (2017) es_ES
dc.description.references Outay, F., Mengash, H.A., Adnan, M.: Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: recent advances and challenges. Transp. Res. Part A 141, 116–129 (2020) es_ES
dc.description.references Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Operations Res. 7, 67–80 (1982) es_ES
dc.description.references Plotnikov, M., Ni, D., Price, D.: “The Application of Unmanned Aerial Systems In Surface Transportation - Volume II-A: development of a Pilot Program to Integrate UAS Technology to Bridge and Rail Inspections”, Massachusetts Department of Transportation Report 19-010 (2019) es_ES
dc.description.references Puerto, J., Valverde, C.: Routing for unmanned aerial vehicles: touring dimensional sets. Eur. J. Operation. Res. (2021). https://doi.org/10.1016/j.ejor.2021.06.061 es_ES
dc.description.references Rauhakallio, P.: “The Past, Present, and Future of Powerline Inspection Automation”, POWER, (2020). https://www.powermag.com/the-past-present-and-future-of-powerline-inspection-automation/ es_ES
dc.description.references Reinelt, G., Theis, D.: A note on the undirected rural postman problem polytope. Math. Program. 106, 447–452 (2006) es_ES
dc.description.references Shafiee, M., Zhou, Z., Mei, L., Dinmohammadi, F., Karama, J., Flynn, D.: Unmanned aerial drones for inspection of offshore wind turbines: a mission-critical failure analysis. Robotics 10, 26 (2021). https://doi.org/10.3390/robotics10010026 es_ES
dc.description.references Sherrock, E., Neubecker, K.: “Unmanned Aircraft System Applications in International Railroads”, United States Department of Transportation Report DOT/FRA/ORD-18/04, Final Report, February 2018 (2018) es_ES
dc.description.references United Nations ESCAP (Economic and Social Commission for Asia and the Pacific), Working Group on the Trans-Asian Railway Network, (2019). Inspection and monitoring of railway infrastructure using aerial drones. Note by the secretariat, ESCAP/TARN/WG/2019/4 es_ES
dc.description.references Wishart, J., Lennertz, T., Hasson, D.: “Use Cases for Unmanned Aircraft Systems (UAS) in Public Transportation Systems”, Federal Transit Administration FTA Report No. 0176, John A. Volpe National Transportation Systems Center, December 2020 (2020) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem