- -

Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment

Mostrar el registro completo del ítem

Zeng, S.; Zhang, N.; Zhang, C.; Su, W.; Llopis-Albert, C. (2022). Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment. Technological Forecasting and Social Change. 175:1-19. https://doi.org/10.1016/j.techfore.2021.121414

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200346

Ficheros en el ítem

Metadatos del ítem

Título: Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment
Autor: Zeng, Shouzhen Zhang, Na Zhang, Chonghui Su, Weihua Llopis-Albert, Carlos
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] With the rapid development of instant delivery, the shrinking labor population and prevailing contact-free economy, companies have launched unmanned ground delivery vehicles (UGDVs) to replace human distribution with ...[+]
Palabras clave: Social network , Unmanned ground delivery vehicle , Multi-criteria decision-making , Self-confidence , Pythagorean fuzzy set , Trust propagation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Technological Forecasting and Social Change. (issn: 0040-1625 )
DOI: 10.1016/j.techfore.2021.121414
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.techfore.2021.121414
Código del Proyecto:
info:eu-repo/grantAgreement/NSSFC//18BTJ027/
info:eu-repo/grantAgreement/NSSFC//20CTJ016/
info:eu-repo/grantAgreement/NSSFC//21ATJ010/
Agradecimientos:
The authors are very grateful to the anonymous referees for their valuable comments and suggestions. This work was supported by National Social Science Foundation of China (No.18BTJ027, 20CTJ016, 21ATJ010).
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem