- -

Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bedir, Hilal es_ES
dc.contributor.author Ari, Esin es_ES
dc.contributor.author Elif Vural, Gulsun es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2023-11-29T19:01:28Z
dc.date.available 2023-11-29T19:01:28Z
dc.date.issued 2022-08 es_ES
dc.identifier.issn 0167-6857 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200348
dc.description.abstract [EN] Vaccaria hispanica is an interesting species with attractive agronomic properties and a wealth of valuable bioactive compounds, potentially useful for many different purposes. Surprisingly, the number of studies focused on the development of in vitro tools for a rapid production of clonal populations is extremely limited. In the present study, two wild Turkish genotypes, previously characterized as high starch and saponin producers, are used to explore the possibilities of regenerating clonal plants through somatic embryogenesis and organogenesis. This work investigates the independent effects of genotype, type of explant and composition of the culture medium, and the interactions among them, in the growth and proliferation of calli from the explants, and the induction of somatic embryogenesis and organogenesis fron the callus surface. Some of the interactions were found significant to promote these processes. V. hispanica proved to be especially responsive for callus induction from all the explants tested. Particular explant types and combinations of plant growth regulators have been identified as especially suitable to induce the different morphogenic processes. V. hispanica is remarkably prone to produce thin adventitious roots, which may be a problem when trying to induce somatic embryogenesis or shoot organogenesis. However, this can be exploited to develop a convenient system for in vitro secondary metabolite production. es_ES
dc.description.sponsorship The study was funded by the TUBITAK (The Scientific and Technological Research Council of Turkey) (TOVAG 1001 Project No: 112O136) and Scientific Research Projects Coordination Unit of Akdeniz University (Project No: FYL-2016-1719). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Cell Tissue and Organ Culture (PCTOC) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cow cockle es_ES
dc.subject Endophyte es_ES
dc.subject Organogenesis es_ES
dc.subject Somatic embryogenesis es_ES
dc.subject Thin adventitious root es_ES
dc.subject Vaccaria hispanica es_ES
dc.subject.classification GENETICA es_ES
dc.title Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11240-022-02275-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/TUBITAK//112O136/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Akdeniz Üniversitesi//FYL-2016-1719/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Bedir, H.; Ari, E.; Elif Vural, G.; Seguí-Simarro, JM. (2022). Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert. Plant Cell Tissue and Organ Culture (PCTOC). 150(2):329-343. https://doi.org/10.1007/s11240-022-02275-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11240-022-02275-8 es_ES
dc.description.upvformatpinicio 329 es_ES
dc.description.upvformatpfin 343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 150 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\459870 es_ES
dc.contributor.funder Akdeniz Üniversitesi es_ES
dc.contributor.funder Scientific and Technological Research Council of Turkey es_ES
dc.description.references Alonso-Herrada J, Rico-Resendiz F, Campos-Guillen J, Guevara-Gonzalez RG, Torres-Pacheco I, Cruz-Hernandez A (2016) Establishment of in vitro regeneration system for Acaciella angustissima (Timbe) a shrubby plant endemic of México for the production of phenolic compounds. Ind Crops Prod 86:49–57 es_ES
dc.description.references Anzidei M, Bennici A, Schiff S, Tani C, Mori B (2000) Organogenesis and somatic embryogenesis in Foeniculum vulgare: histological observations of developing embryogenic callus. Plant Cell Tissue Organ Cult 61(1):69–79 es_ES
dc.description.references Ari E, Bedir H, Deniz IG, Genc I, Seguí-Simarro JM (2022) Evaluation of the androgenic competence of 66 wild Turkish Vaccaria hispanica (Mill.) Rauschert genotypes through microspore culture. Plant Cell Tissue Organ Cult 148:209–214. https://doi.org/10.1007/s11240-021-02169-1 es_ES
dc.description.references Ari E, Buyukalaca S (2006) In vitro regeneration of vaccaria pyramidata. In: 22nd International Eucarpia Symposium - Section Ornamentals- Breeding for Beauty, Sanremo, Italy (11–15 September 2006) es_ES
dc.description.references Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33(5):1821–1829 es_ES
dc.description.references Asthana P, Rai MK, Jaiswal U (2017) Somatic embryogenesis from sepal explants in Sapindus trifoliatus, a plant valuable in herbal soap industry. Ind Crops Prod 100:228–235 es_ES
dc.description.references Balsevich JJ (2008) Prarie carnation (Saponaria vaccaria)—a potential new industrial/medicinal crop for the Prairies. In Fuelling the farm, SSCA annual conference, Regina, Saskatchewan, Canada (12–14 February 2008). pp 46–50 es_ES
dc.description.references Bao J, Zhang H, Xu D, Yang S (2016) Establishment of culture system of Vaccaria segetalis hairy roots and determination of vaccarin. Chin Tradit Herb Drugs 47(1):138–142. https://doi.org/10.7501/j.issn.0253-2670.2016.01.021 es_ES
dc.description.references Bhansali RR (1990) Somatic embryogenesis and regeneration of in plantles in pomegranate. Ann Bot—London 66(3):249–253 es_ES
dc.description.references Cakilcioglu U, Khatun S, Turkoglu I, Hayta S (2011) Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 137(1):469–486 es_ES
dc.description.references Cam IB, Balci-Torun F, Topuz A, Ari E, Deniz IG, Genc I (2018) Physical and chemical properties of cow cockle seeds (Vaccaria hispanica (Mill.) Rauschert) genetic resources of Turkey. Ind Crops Prod 126:190–200 es_ES
dc.description.references Casas JL, Olmos E, Piqueras A (2010) In vitro propagation of carnation (Dianthus caryophyllus L.). Protocols for in vitro propagation of ornamental plants. Humana Press, Totowa, pp 109–116 es_ES
dc.description.references Chen X, Qu Y, Sheng L, Liu J, Huang H, Xu L (2014) A simple method suitable to study de novo root organogenesis. Front Plant Sci 5:208 es_ES
dc.description.references Chen H, Guo T, Wang D, Qin R (2018) Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed Pharmacother 97:1155–1163 es_ES
dc.description.references Christianson M, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95(2):288–293 es_ES
dc.description.references Condie JA, Nowak G, Reed DW, Balsevich JJ, Reaney MJ, Arnison PG, Covello PS (2011) The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J 67(4):682–690 es_ES
dc.description.references Da Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FDS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133 es_ES
dc.description.references Deepak KV, Narayanan GS, Prakash M, Murugan S, Anandan R (2019) Efficient plant regeneration and histological evaluations of regenerants through organogenesis and somatic embryogenesis in Spermacoce hispida L.—an underutilized medicinally important plant. Ind Crops Prod 134:292–302 es_ES
dc.description.references Duddu HS, Johnson EN, Blackshaw RE, Shirtliffe SJ (2015) Evaluation of seed persistence in cow cockle. Crop Sci 55(2):899–909 es_ES
dc.description.references Faisal M, Alatar AA, El-Sheikh MA, Abdel-Salam EM, Qahtan AA (2018) Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brahmi. Ind Crops Prod 118:173–179 es_ES
dc.description.references Feher A (2005) Why somatic plant cells start to form embryos? Somatic embryogenesis. Springer, Berlin, Heidelberg, pp 85–101 es_ES
dc.description.references Feher A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta Gene Regul Mech 1849(4):385–402 es_ES
dc.description.references Frey L, Saranga Y, Janick J (1992) Somatic embryogenesis in carnation. HortScience 27(1):63–65 es_ES
dc.description.references Gehlot P, Bohra N, Harwani D (2015) Endophytic microorganism and their functions. Microbes: in Action (editors: Singh, J. and Gehlot, p.) Agrobios (india) 412:167–187 es_ES
dc.description.references Ghazi TD, Cheema HV, Nabors MW (1986) Somatic embryogenesis and plant regeneration from embryogenic callus of soybean Glycine max L. Plant Cell Rep 5(6):452–456 es_ES
dc.description.references Grand View Research (2020) Nutraceutical market size worth $722.49 Billion By 2027. Available at https://www.grandviewresearch.com/press-release/global-nutraceuticals-market. Accessed 10 Sept 2021 es_ES
dc.description.references Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258 es_ES
dc.description.references Hutchison MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of TDZ: evidence of the involvement of endogenous auxin in TDZ-induced somatic embryogenesis of geranium (Pelargonium horturum Bailey). J Plant Physiol 149:573–579 es_ES
dc.description.references Ishtiaq M, Maqbool M, Ajaib M, Ahmed M, Hussain I, Khanam H et al (2021) Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Samahni, District Bhimber Azad Jammu and Kashmir, Pakistan. PLoS ONE 16(1):e0243151 es_ES
dc.description.references Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2):91–110 es_ES
dc.description.references Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27(2):137A-138A es_ES
dc.description.references Klimaszewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4(3):183–197 es_ES
dc.description.references Koga M, Hirashima K, Nakahara T (2000) Genetic transformation in Vaccaria pyramidata using Agrobacterium rhizogenes. Plant Biotechnol 17(2):163–166 es_ES
dc.description.references Lima AO, Quecine MC, Fungaro MH, Andreote FD, Maccheroni W, Araujo WL et al (2005) Molecular characterization of a β-1, 4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68(1):57–65 es_ES
dc.description.references Lin YH, Chang C, Chang WC (2000) Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell Tissue Organ Cult 62(1):21–25 es_ES
dc.description.references Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5(6):621–630 es_ES
dc.description.references Mazza G, Biliaderis CG, Przybylski R, Oomah BD (1992) Compositional and morphological characteristics of cow cockle (Saponaria vaccaria) seed, a potential alternative crop. J Agric Food Chem 40(9):1520–1523 es_ES
dc.description.references Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143(2):959–969 es_ES
dc.description.references Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31:1097–1103 es_ES
dc.description.references Minocha SC, Minocha R (1995) Role of polyamines in somatic embryogenesis. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I. Biotechnology in agriculture and forestry, vol 30. Springer, Berlin, pp 53–70 es_ES
dc.description.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 es_ES
dc.description.references Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34(4):267 es_ES
dc.description.references Nitsch J, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87 es_ES
dc.description.references O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termacarphi Pty Ltd, Victoria es_ES
dc.description.references Orhan IE, Senol FS, Haznedaroglu MZ, Koyu H, Erdem SA, Yilmaz G, Cicek M, Yaprak AE, Ari E, Kucukboyaci N, Toker G (2017) Neurobiological evaluation of thirty-one medicinal plant extracts using microtiter enzyme assays. Clin Phytoscience 2(1):1–12 es_ES
dc.description.references Radojevic L (1988) Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J Plant Physiol 132(3):322–326 es_ES
dc.description.references Sang S, Lao A, Chen Z, Uzawa J, Fujimoto Y (2003) Chemistry and bioactivity of the seeds of Vaccaria segetalis. Oriental foods and herbs: chemistry and health effects. American Chemical Society, Washington, pp 279–291 es_ES
dc.description.references Schmidt JF, Moore MD, Pelcher LE, Covello PS (2007) High efficiency Agrobacterium rhizogenes-mediated transformation of Saponaria vaccaria L. (Caryophyllaceae) using fluorescence selection. Plant Cell Rep 26(9):1547–1554 es_ES
dc.description.references Slesak H, Popielarska M, Goralski G (2005) Morphological and histological aspects of 2, 4-D effects on rape explants (Brassica napus L. cv. Kana) cultured in vitro. Acta Biol Crac Ser Bot 47(1):219–226 es_ES
dc.description.references Tang W (2000) High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep 19(7):727–732 es_ES
dc.description.references Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42(1):35–42 es_ES
dc.description.references Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252 es_ES
dc.description.references Verma SK, Yucesan BB, Gurel S, Gurel E (2011) Indirect somatic embryogenesis and shoot organogenesis from cotyledonary leaf segments of Digitalis lamarckii Ivan., an endemic medicinal species. Turk J Biol 35(6):743–750 es_ES
dc.description.references Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep 10:66–74 es_ES
dc.description.references Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69(3):233–249 es_ES
dc.description.references Wang J, Zhang Y, Li Y, Wang X, Liu Z, Nan W, Zhao C, Wang F, Ma J, Bi Y (2016) Involvement of polar auxin transport in the inhibition of Arabidopsis seedling growth induced by Stenotrophomonas maltophilia. Biol Plant 60(2):299–310 es_ES
dc.description.references Willenborg CJ, Johnson EN (2013) Influence of seeding date and seeding rate on cow cockle, a new medicinal and industrial crop. Ind Crops Prod 49:554–560 es_ES
dc.description.references Wong KH, Tan WL, Kini SG, Xiao T, Serra A, Sze SK, Tam JP (2017) Vaccatides: antifungal glutamine-rich Hevein-like peptides from Vaccaria hispanica. Front Plant Sci 8:1100 es_ES
dc.description.references Xu L (2018) De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. Curr Opin Plant Biol 41:39–45 es_ES
dc.description.references Yao L, Wang J, He J, Huang L, Gao W (2021) Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2020.1869691 es_ES
dc.description.references Zheng MY, Konzak CF (1999) Effect of 2, 4-dichlorophenoxyacetic acid on callus induction and plant regeneration in anther culture of wheat (Triticum aestivum L.). Plant Cell Rep 19(1):69–73 es_ES
dc.description.references Zhou J, Ma H, Guo F, Luo X (1994) Effect of thidiazuron on somatic embryogenesis of Cayratia japonica. Plant Cell Tissue Organ Cult 36(1):73–79 es_ES
dc.description.references Zhou G, Tang L, Wang T, Zhou X, Kou Z, Wu J, Wang Z (2016) Phytochemistry and pharmacological activities of Vaccaria hispanica (Miller) Rauschert: a review. Phytochem Rev 15(5):813–827 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem