Mostrar el registro sencillo del ítem
dc.contributor.author | Bedir, Hilal | es_ES |
dc.contributor.author | Ari, Esin | es_ES |
dc.contributor.author | Elif Vural, Gulsun | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.date.accessioned | 2023-11-29T19:01:28Z | |
dc.date.available | 2023-11-29T19:01:28Z | |
dc.date.issued | 2022-08 | es_ES |
dc.identifier.issn | 0167-6857 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200348 | |
dc.description.abstract | [EN] Vaccaria hispanica is an interesting species with attractive agronomic properties and a wealth of valuable bioactive compounds, potentially useful for many different purposes. Surprisingly, the number of studies focused on the development of in vitro tools for a rapid production of clonal populations is extremely limited. In the present study, two wild Turkish genotypes, previously characterized as high starch and saponin producers, are used to explore the possibilities of regenerating clonal plants through somatic embryogenesis and organogenesis. This work investigates the independent effects of genotype, type of explant and composition of the culture medium, and the interactions among them, in the growth and proliferation of calli from the explants, and the induction of somatic embryogenesis and organogenesis fron the callus surface. Some of the interactions were found significant to promote these processes. V. hispanica proved to be especially responsive for callus induction from all the explants tested. Particular explant types and combinations of plant growth regulators have been identified as especially suitable to induce the different morphogenic processes. V. hispanica is remarkably prone to produce thin adventitious roots, which may be a problem when trying to induce somatic embryogenesis or shoot organogenesis. However, this can be exploited to develop a convenient system for in vitro secondary metabolite production. | es_ES |
dc.description.sponsorship | The study was funded by the TUBITAK (The Scientific and Technological Research Council of Turkey) (TOVAG 1001 Project No: 112O136) and Scientific Research Projects Coordination Unit of Akdeniz University (Project No: FYL-2016-1719). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Plant Cell Tissue and Organ Culture (PCTOC) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cow cockle | es_ES |
dc.subject | Endophyte | es_ES |
dc.subject | Organogenesis | es_ES |
dc.subject | Somatic embryogenesis | es_ES |
dc.subject | Thin adventitious root | es_ES |
dc.subject | Vaccaria hispanica | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11240-022-02275-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/TUBITAK//112O136/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Akdeniz Üniversitesi//FYL-2016-1719/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Bedir, H.; Ari, E.; Elif Vural, G.; Seguí-Simarro, JM. (2022). Effect of the genotype, explant source and culture medium in somatic embryogenesis and organogenesis in Vaccaria hispanica (Mill.) Rauschert. Plant Cell Tissue and Organ Culture (PCTOC). 150(2):329-343. https://doi.org/10.1007/s11240-022-02275-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11240-022-02275-8 | es_ES |
dc.description.upvformatpinicio | 329 | es_ES |
dc.description.upvformatpfin | 343 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 150 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\459870 | es_ES |
dc.contributor.funder | Akdeniz Üniversitesi | es_ES |
dc.contributor.funder | Scientific and Technological Research Council of Turkey | es_ES |
dc.description.references | Alonso-Herrada J, Rico-Resendiz F, Campos-Guillen J, Guevara-Gonzalez RG, Torres-Pacheco I, Cruz-Hernandez A (2016) Establishment of in vitro regeneration system for Acaciella angustissima (Timbe) a shrubby plant endemic of México for the production of phenolic compounds. Ind Crops Prod 86:49–57 | es_ES |
dc.description.references | Anzidei M, Bennici A, Schiff S, Tani C, Mori B (2000) Organogenesis and somatic embryogenesis in Foeniculum vulgare: histological observations of developing embryogenic callus. Plant Cell Tissue Organ Cult 61(1):69–79 | es_ES |
dc.description.references | Ari E, Bedir H, Deniz IG, Genc I, Seguí-Simarro JM (2022) Evaluation of the androgenic competence of 66 wild Turkish Vaccaria hispanica (Mill.) Rauschert genotypes through microspore culture. Plant Cell Tissue Organ Cult 148:209–214. https://doi.org/10.1007/s11240-021-02169-1 | es_ES |
dc.description.references | Ari E, Buyukalaca S (2006) In vitro regeneration of vaccaria pyramidata. In: 22nd International Eucarpia Symposium - Section Ornamentals- Breeding for Beauty, Sanremo, Italy (11–15 September 2006) | es_ES |
dc.description.references | Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33(5):1821–1829 | es_ES |
dc.description.references | Asthana P, Rai MK, Jaiswal U (2017) Somatic embryogenesis from sepal explants in Sapindus trifoliatus, a plant valuable in herbal soap industry. Ind Crops Prod 100:228–235 | es_ES |
dc.description.references | Balsevich JJ (2008) Prarie carnation (Saponaria vaccaria)—a potential new industrial/medicinal crop for the Prairies. In Fuelling the farm, SSCA annual conference, Regina, Saskatchewan, Canada (12–14 February 2008). pp 46–50 | es_ES |
dc.description.references | Bao J, Zhang H, Xu D, Yang S (2016) Establishment of culture system of Vaccaria segetalis hairy roots and determination of vaccarin. Chin Tradit Herb Drugs 47(1):138–142. https://doi.org/10.7501/j.issn.0253-2670.2016.01.021 | es_ES |
dc.description.references | Bhansali RR (1990) Somatic embryogenesis and regeneration of in plantles in pomegranate. Ann Bot—London 66(3):249–253 | es_ES |
dc.description.references | Cakilcioglu U, Khatun S, Turkoglu I, Hayta S (2011) Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 137(1):469–486 | es_ES |
dc.description.references | Cam IB, Balci-Torun F, Topuz A, Ari E, Deniz IG, Genc I (2018) Physical and chemical properties of cow cockle seeds (Vaccaria hispanica (Mill.) Rauschert) genetic resources of Turkey. Ind Crops Prod 126:190–200 | es_ES |
dc.description.references | Casas JL, Olmos E, Piqueras A (2010) In vitro propagation of carnation (Dianthus caryophyllus L.). Protocols for in vitro propagation of ornamental plants. Humana Press, Totowa, pp 109–116 | es_ES |
dc.description.references | Chen X, Qu Y, Sheng L, Liu J, Huang H, Xu L (2014) A simple method suitable to study de novo root organogenesis. Front Plant Sci 5:208 | es_ES |
dc.description.references | Chen H, Guo T, Wang D, Qin R (2018) Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed Pharmacother 97:1155–1163 | es_ES |
dc.description.references | Christianson M, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95(2):288–293 | es_ES |
dc.description.references | Condie JA, Nowak G, Reed DW, Balsevich JJ, Reaney MJ, Arnison PG, Covello PS (2011) The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J 67(4):682–690 | es_ES |
dc.description.references | Da Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FDS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133 | es_ES |
dc.description.references | Deepak KV, Narayanan GS, Prakash M, Murugan S, Anandan R (2019) Efficient plant regeneration and histological evaluations of regenerants through organogenesis and somatic embryogenesis in Spermacoce hispida L.—an underutilized medicinally important plant. Ind Crops Prod 134:292–302 | es_ES |
dc.description.references | Duddu HS, Johnson EN, Blackshaw RE, Shirtliffe SJ (2015) Evaluation of seed persistence in cow cockle. Crop Sci 55(2):899–909 | es_ES |
dc.description.references | Faisal M, Alatar AA, El-Sheikh MA, Abdel-Salam EM, Qahtan AA (2018) Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brahmi. Ind Crops Prod 118:173–179 | es_ES |
dc.description.references | Feher A (2005) Why somatic plant cells start to form embryos? Somatic embryogenesis. Springer, Berlin, Heidelberg, pp 85–101 | es_ES |
dc.description.references | Feher A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta Gene Regul Mech 1849(4):385–402 | es_ES |
dc.description.references | Frey L, Saranga Y, Janick J (1992) Somatic embryogenesis in carnation. HortScience 27(1):63–65 | es_ES |
dc.description.references | Gehlot P, Bohra N, Harwani D (2015) Endophytic microorganism and their functions. Microbes: in Action (editors: Singh, J. and Gehlot, p.) Agrobios (india) 412:167–187 | es_ES |
dc.description.references | Ghazi TD, Cheema HV, Nabors MW (1986) Somatic embryogenesis and plant regeneration from embryogenic callus of soybean Glycine max L. Plant Cell Rep 5(6):452–456 | es_ES |
dc.description.references | Grand View Research (2020) Nutraceutical market size worth $722.49 Billion By 2027. Available at https://www.grandviewresearch.com/press-release/global-nutraceuticals-market. Accessed 10 Sept 2021 | es_ES |
dc.description.references | Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258 | es_ES |
dc.description.references | Hutchison MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of TDZ: evidence of the involvement of endogenous auxin in TDZ-induced somatic embryogenesis of geranium (Pelargonium horturum Bailey). J Plant Physiol 149:573–579 | es_ES |
dc.description.references | Ishtiaq M, Maqbool M, Ajaib M, Ahmed M, Hussain I, Khanam H et al (2021) Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Samahni, District Bhimber Azad Jammu and Kashmir, Pakistan. PLoS ONE 16(1):e0243151 | es_ES |
dc.description.references | Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2):91–110 | es_ES |
dc.description.references | Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27(2):137A-138A | es_ES |
dc.description.references | Klimaszewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4(3):183–197 | es_ES |
dc.description.references | Koga M, Hirashima K, Nakahara T (2000) Genetic transformation in Vaccaria pyramidata using Agrobacterium rhizogenes. Plant Biotechnol 17(2):163–166 | es_ES |
dc.description.references | Lima AO, Quecine MC, Fungaro MH, Andreote FD, Maccheroni W, Araujo WL et al (2005) Molecular characterization of a β-1, 4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68(1):57–65 | es_ES |
dc.description.references | Lin YH, Chang C, Chang WC (2000) Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell Tissue Organ Cult 62(1):21–25 | es_ES |
dc.description.references | Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5(6):621–630 | es_ES |
dc.description.references | Mazza G, Biliaderis CG, Przybylski R, Oomah BD (1992) Compositional and morphological characteristics of cow cockle (Saponaria vaccaria) seed, a potential alternative crop. J Agric Food Chem 40(9):1520–1523 | es_ES |
dc.description.references | Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143(2):959–969 | es_ES |
dc.description.references | Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31:1097–1103 | es_ES |
dc.description.references | Minocha SC, Minocha R (1995) Role of polyamines in somatic embryogenesis. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I. Biotechnology in agriculture and forestry, vol 30. Springer, Berlin, pp 53–70 | es_ES |
dc.description.references | Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 | es_ES |
dc.description.references | Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34(4):267 | es_ES |
dc.description.references | Nitsch J, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87 | es_ES |
dc.description.references | O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termacarphi Pty Ltd, Victoria | es_ES |
dc.description.references | Orhan IE, Senol FS, Haznedaroglu MZ, Koyu H, Erdem SA, Yilmaz G, Cicek M, Yaprak AE, Ari E, Kucukboyaci N, Toker G (2017) Neurobiological evaluation of thirty-one medicinal plant extracts using microtiter enzyme assays. Clin Phytoscience 2(1):1–12 | es_ES |
dc.description.references | Radojevic L (1988) Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J Plant Physiol 132(3):322–326 | es_ES |
dc.description.references | Sang S, Lao A, Chen Z, Uzawa J, Fujimoto Y (2003) Chemistry and bioactivity of the seeds of Vaccaria segetalis. Oriental foods and herbs: chemistry and health effects. American Chemical Society, Washington, pp 279–291 | es_ES |
dc.description.references | Schmidt JF, Moore MD, Pelcher LE, Covello PS (2007) High efficiency Agrobacterium rhizogenes-mediated transformation of Saponaria vaccaria L. (Caryophyllaceae) using fluorescence selection. Plant Cell Rep 26(9):1547–1554 | es_ES |
dc.description.references | Slesak H, Popielarska M, Goralski G (2005) Morphological and histological aspects of 2, 4-D effects on rape explants (Brassica napus L. cv. Kana) cultured in vitro. Acta Biol Crac Ser Bot 47(1):219–226 | es_ES |
dc.description.references | Tang W (2000) High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep 19(7):727–732 | es_ES |
dc.description.references | Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42(1):35–42 | es_ES |
dc.description.references | Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252 | es_ES |
dc.description.references | Verma SK, Yucesan BB, Gurel S, Gurel E (2011) Indirect somatic embryogenesis and shoot organogenesis from cotyledonary leaf segments of Digitalis lamarckii Ivan., an endemic medicinal species. Turk J Biol 35(6):743–750 | es_ES |
dc.description.references | Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep 10:66–74 | es_ES |
dc.description.references | Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69(3):233–249 | es_ES |
dc.description.references | Wang J, Zhang Y, Li Y, Wang X, Liu Z, Nan W, Zhao C, Wang F, Ma J, Bi Y (2016) Involvement of polar auxin transport in the inhibition of Arabidopsis seedling growth induced by Stenotrophomonas maltophilia. Biol Plant 60(2):299–310 | es_ES |
dc.description.references | Willenborg CJ, Johnson EN (2013) Influence of seeding date and seeding rate on cow cockle, a new medicinal and industrial crop. Ind Crops Prod 49:554–560 | es_ES |
dc.description.references | Wong KH, Tan WL, Kini SG, Xiao T, Serra A, Sze SK, Tam JP (2017) Vaccatides: antifungal glutamine-rich Hevein-like peptides from Vaccaria hispanica. Front Plant Sci 8:1100 | es_ES |
dc.description.references | Xu L (2018) De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. Curr Opin Plant Biol 41:39–45 | es_ES |
dc.description.references | Yao L, Wang J, He J, Huang L, Gao W (2021) Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2020.1869691 | es_ES |
dc.description.references | Zheng MY, Konzak CF (1999) Effect of 2, 4-dichlorophenoxyacetic acid on callus induction and plant regeneration in anther culture of wheat (Triticum aestivum L.). Plant Cell Rep 19(1):69–73 | es_ES |
dc.description.references | Zhou J, Ma H, Guo F, Luo X (1994) Effect of thidiazuron on somatic embryogenesis of Cayratia japonica. Plant Cell Tissue Organ Cult 36(1):73–79 | es_ES |
dc.description.references | Zhou G, Tang L, Wang T, Zhou X, Kou Z, Wu J, Wang Z (2016) Phytochemistry and pharmacological activities of Vaccaria hispanica (Miller) Rauschert: a review. Phytochem Rev 15(5):813–827 | es_ES |