- -

Computation and Statistical Analysis of Bearings¿ Time- and Frequency-Domain Features Enhanced Using Cepstrum Pre-Whitening: A ML- and DL-Based Classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computation and Statistical Analysis of Bearings¿ Time- and Frequency-Domain Features Enhanced Using Cepstrum Pre-Whitening: A ML- and DL-Based Classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cascales-Fulgencio, David es_ES
dc.contributor.author Quiles Cucarella, Eduardo es_ES
dc.contributor.author García Moreno, Emilio es_ES
dc.date.accessioned 2023-11-29T19:01:36Z
dc.date.available 2023-11-29T19:01:36Z
dc.date.issued 2022-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200350
dc.description.abstract [EN] Vibration signals captured with an accelerometer carry essential information about Rolling Element Bearings (REBs) faults in rotating machinery, and the envelope spectrum has proven to be a robust tool for their diagnosis at an early stage of development. In this paper, Cepstrum Pre-Whitening (CPW) has been applied to REBs' signals to enhance and extract health-state condition indicators from the preprocessed signals' envelope spectra. These features are used to train some of the state-of-the-art Machine Learning (ML) algorithms, combined with time-domain features such as basic statistics, high-order statistics and impulsive metrics. Before training, these features were ranked according to statistical techniques such as one-way ANOVA and the Kruskal-Wallis test. A Convolutional Neural Network (CNN) has been designed to implement the classification of REBs' signals from a Deep Learning (DL) point of view, receiving raw time signals' greyscale images as inputs. The different ML models have yielded validation accuracies of up to 87.6%, while the CNN yielded accuracy of up to 77.61%, for the entire dataset. In addition, the same models have yielded validation accuracies of up to 97.8%, while the CNN, 90.67%, where signals from REBs with faulty balls have been removed from the dataset, highlighting the difficulty of classifying such faults. Furthermore, from the results of the different ML algorithms compared to those of the CNN, frequency-domain features have proven to be highly relevant condition indicators combined with some time-domain features. These models can be potentially helpful in applications that require early diagnosis of REBs faults, such as wind turbines, vehicle transmissions and industrial machinery. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Condition monitoring of wind turbines es_ES
dc.subject Rolling element bearings es_ES
dc.subject Vibration analysis es_ES
dc.subject Envelope spectrum es_ES
dc.subject Cepstrum pre-whitening es_ES
dc.subject Time-domain features es_ES
dc.subject Machine learning es_ES
dc.subject Deep learning es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Computation and Statistical Analysis of Bearings¿ Time- and Frequency-Domain Features Enhanced Using Cepstrum Pre-Whitening: A ML- and DL-Based Classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app122110882 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Cascales-Fulgencio, D.; Quiles Cucarella, E.; García Moreno, E. (2022). Computation and Statistical Analysis of Bearings¿ Time- and Frequency-Domain Features Enhanced Using Cepstrum Pre-Whitening: A ML- and DL-Based Classification. Applied Sciences. 12(21):1-25. https://doi.org/10.3390/app122110882 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app122110882 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\475559 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem