Mostrar el registro sencillo del ítem
dc.contributor.author | Mohajeri, K. | es_ES |
dc.contributor.author | Tabari, M. | es_ES |
dc.contributor.author | Sadati, E. | es_ES |
dc.contributor.author | Javanmard, Z. | es_ES |
dc.contributor.author | Guidi , L. | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.date.accessioned | 2023-11-29T19:02:07Z | |
dc.date.available | 2023-11-29T19:02:07Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 1611-4426 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200357 | |
dc.description.abstract | [EN] European olive (Olea europaea L.), an evergreen woody plant, is relatively tolerant to cold and drought and its cultivation in semi-arid regions is an important strategy. In this work, the response of olive cultivar `Zard¿ to chilling and freezing are evaluated in a completely randomized design. Two-year-old olive seedlings were exposed at temperature of -10, -5, 2 and 10°C for 3 and 6 hours. Relative water content (RWC), water potential (WP), electrolyte leakage (EL), photosynthetic pigments content [including chlorophyll (Chl) a, Chl b, Chl a/b, total chlorophyll (ChlTOT) and carotenoid], ChlTOT/carotenoid ratio were determined at the end of the treatments. Likewise, the specific activities of some antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), were also measured in leaf extracts at the same time. The effect of temperature and duration of cold treatment and their interaction were significant on EL and SOD activity. Both pigment content and antioxidant enzyme activities were influenced by temperature but ChlTOT and enzymes of SOD and POX differed significantly in relation to the duration of the cold treatment. RWC and WP were changed by temperature and also by duration of cold treatment. With increasing the cold stress (from 10 to -10°C), RWC, WP and photosynthetic pigments decreased but SOD, POX and CAT activities increased. However, the increase in the activities of antioxidant enzymes was not enough to eliminate the damage induced by oxidative stress. This study evidenced as events of low temperature (below 10°C) during the cultivation of olive (cultivar `Zard¿) induced alteration in plant physiology. From a practical standpoint, the results could be used as approximate tools to determine whether the temperature conditions in a proposed new growing region are appropriate for achieving sustainable oil productivity and quality. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | International Society for Horticultural Science (ISHS) | es_ES |
dc.relation.ispartof | European Journal of Horticultural Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antioxidant enzymes | es_ES |
dc.subject | Chilling | es_ES |
dc.subject | Chlorophyll | es_ES |
dc.subject | Cultivar 'Zard' of olive | es_ES |
dc.subject | Electrolyte leakage | es_ES |
dc.subject | Water potential | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.17660/eJHS.2022/021 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Mohajeri, K.; Tabari, M.; Sadati, E.; Javanmard, Z.; Guidi, L.; Vicente, O. (2022). Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings. European Journal of Horticultural Science. 87(2):1-10. https://doi.org/10.17660/eJHS.2022/021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.17660/eJHS.2022/021 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 87 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\470871 | es_ES |
dc.description.references | Afshari, H., Zahedi, R., Parvaneh, T., and Zadeh Bagheri, M. (2014). Influence of salicylic acid on proline levels, soluble sugars and ion leakage of two apricot cultivars under cold stress. J. Crop. Improv. 16(1), 127-138 (in Persian with an abstract in English). | es_ES |
dc.description.references | Aki, F., Kazemitabar, K., Hashemi, H., and Najafi Zarini, H. (2016). Evaluated of effect of cold stress on proline, malondialdehyde and photosynthetic pigments in seedling stage of sesame (Sesamum indicum L.) genotypes. J. Crop Breed. 8(18), 166-175 (in Persian with an abstract in English). | es_ES |
dc.description.references | Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6(9), 2026-2032. | es_ES |
dc.description.references | Arias, N.S. (2015). Respuestas morfo-?siológicas a bajas temperaturas y disponibilidad de agua en variedades de Olea europaea L. Ph.D. thesis (Argentina: Universidad Nacional del Comahue). | es_ES |
dc.description.references | Azzarello, E., Mugnai, S., Pandolfi, C., Masi, E., Marone, E., and Mancuso, S. (2009). Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees 23, 159-167. | es_ES |
dc.description.references | Banerjee, A., Wani, S.H., and Roychoudhury, A. (2017). Epigenetic control of plant cold responses. Front. Plant Sci. 8, 1643. | es_ES |
dc.description.references | Bernardini, E., and Visioli, F. (2017). High quality, good health: the case for olive oil. Eur. J. Lipid Sci. Technol. 119(1), 1500505. | es_ES |
dc.description.references | Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. | es_ES |
dc.description.references | Cakmak, I., and Horst, W. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max.). Physiol. Plant. 83(3), 463-468. | es_ES |
dc.description.references | Campos, P.S., Quatrin, V., Ramulho, J.C., and Nunes, M.A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160(3), 283-292. | es_ES |
dc.description.references | Campoy, J.A., Ruiz, D., and Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 130, 357-372 [CrossRef]. | es_ES |
dc.description.references | Cansev, A., Gulen, H., and Eris, A. (2009). Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: Seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J. Agric. Sci. 147(1), 51-61. | es_ES |
dc.description.references | Centeno, A., Memmi, H., Moreno, M.M., Moreno, C., and Pérez-López, D. (2018). Water relations in olive trees under cold conditions. Sci. Hortic. 235, 1-8. | es_ES |
dc.description.references | de Carvalho, M.C. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal. Behav. 3, 156-165. | es_ES |
dc.description.references | FAO (2021). Faostat.fao.org (accessed March 30, 2021). | es_ES |
dc.description.references | Fathi, E., Tahmasebi, I., and Teimoori, N. (2016). Electrolyte leakage and catalase and peroxidase activity in chickpea genotypes seedling responding to low temperatures. Agroecol. J. 12, 25-34 (in Persian with an abstract in English). | es_ES |
dc.description.references | Ghanati, F., Morita, A., and Yokota, H. (2002). Induction of suberin and increase of lignin content by excess boron in tobacco cell. Soil Sci. Plant Nutr. 48(3), 357-364. | es_ES |
dc.description.references | Ghosh, T., Rai, M., Tyagi, W., and Challam, C. (2016). Seedling stage low temperature response in tolerant and susceptible rice genotypes suggests role of relative water content and members of OsSNAC gene family. Plant Signal. Behav. 11(5), e1138192. | es_ES |
dc.description.references | Haberman, A., Bakhshian, O., Cerezo-Medina, S., Paltiel, J., Adler, C., Ben-Ari, G., Mercado, J.A., Pliego-Alfaro, F., Lavee, S., and Samach, A. (2017). A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environm. 40, 1263-1280 [CrossRef]. | es_ES |
dc.description.references | Haddadian, M. (2011). Effect of spermine on inducing resistance to low temperature stress in olive plants cultivars 'Zard' and 'Roghani'. M.Sc. thesis (University of Guilan, Faculty of Agriculture) (in Persian with an abstract in English). | es_ES |
dc.description.references | Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolrá, R., and Poschenrieder, C. (2019). Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Past. Sci. 70(3), 218-233. | es_ES |
dc.description.references | Hatfield, J.L., and Prueger, J.H. (2015). Temperature extremes: Effect on plant growth and development. Weather. Clim. Extremes. 10, 4-10. | es_ES |
dc.description.references | Henson, I.E., Mahalakshmi, V., Bidinger, F.R., and Alagars-Wamy, G. (1981). Genotypic variation in pearl miller (Pennisetum americanum L.) Leeke in the ability to accumulate abscisic acid in response on water stress. J. Exp. Bot. 32, 899-910. | es_ES |
dc.description.references | Homapour, M., Hamedi, M., Moslehishad, M., and Safafar, H. (2014). Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon. Iran. Nutr. Food. Technol. 8(3), 121-130 (in Persian with an abstract in English). | es_ES |
dc.description.references | Jan, N., Majeed, U., Andrabi, K.I., and John, R. (2018). Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiol. Plant. 40(4), 73. | es_ES |
dc.description.references | Jiang, X., Song, Y., Xi, X., Guo, B., Ma, K., Wang, Z., and Zhang, Z. (2011). Physiological and biochemical responses to low temperature stress in hybrid clones of Populus ussuriensis Kom. × P. deltoides Bartr. Afr. J. Biotechnol. 10(82), 19011-19024. | es_ES |
dc.description.references | Junpatiw, A., Lertrat, K., Lomthaisong, K., and Tangwongchai, R. (2013). Effects of steaming, boiling and frozen storage on carotenoid contents of various sweet corn cultivars. Int. Food Res. J. 20(5), 2219-2225. | es_ES |
dc.description.references | Kiara, D.V., and Roy, D.N (1999). Oxidative stress and antioxidative defense with an emphasis on plants antioxidants. Environm. Rev. 7, 31-51. | es_ES |
dc.description.references | Koubouris, G.C., Metzidakis, I.T., and Vasilakakis, M.D. (2010). Influence of cross-pollination on the development of parthenocarpic olive (Olea europaea) fruits (shotberries). Exp. Agric. 46, 67-76 [CrossRef]. | es_ES |
dc.description.references | Kramer, P.J., and Boyer, J.S. (1995). Water relations of plants and soils (San Diego, U.S.A.: Academic Press), pp. 1-495. | es_ES |
dc.description.references | Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst. 134, 279-295 [CrossRef]. | es_ES |
dc.description.references | Li, X., Ahammed, G.J., Li, Z.X., Zhang, L., Wei, J.P., Yan, P., Zhang, L.P., and Han, W.Y. (2018). Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Sci. Hortic. 230, 155-160. | es_ES |
dc.description.references | Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382. | es_ES |
dc.description.references | Liu, W., Yu, K., He, T., Li, F., Zhang, D., and Liu, J. (2013). The low temperature induced physiological responses of Avena nuda L., A cold-tolerant plant species. Sci. World. J. 2013, Article ID 658793. | es_ES |
dc.description.references | Miura, K., and Furumoto, T. (2013). Cold signaling and cold response in plants. Int. J. Molec. Sci. 14(3), 5312-5337. | es_ES |
dc.description.references | Moshtaghi, E.A., Shahsavar, A.R., and Taslimpour, M.R. (2009). Ionic leakage as indicators of cold hardiness in olive (Olea europaea L.). World. Appl. Sci. J. 7, 1308-1310. | es_ES |
dc.description.references | Muldrew, B., Acker, J.P., Elliott, J.A.W., and McGann, L.E. (2004). The water to ice transition: Implications for living cells. In Life in the Frozen State, B.J. Fuller, N. Lane, and E.E. Benson, eds. (Boca Raton: CRC Press), p. 67-108. | es_ES |
dc.description.references | Nayyar, H., Bains, T.S., and Kumer, S. (2005). Chilling stressed chickpea seedling: effect of cold acclimation, calcium and abscise acid on cryoprotective solutes and oxidative damage. Environm. Exp. Bot. 54, 275-285. | es_ES |
dc.description.references | Pearce, R. (2001). Plant Freezing and Damage. Ann. Bot. 87, 417-424 [CrossRef]. | es_ES |
dc.description.references | Rafie-Rad, Z., Golchin, A., Tajvar, Y., and Fattahi Moghadam, J. (2018). The influence of super absorbent polymer aquasorb levels on vegetative and reproductive growth of Page Mandarin under drought stress condition. Crop. Improv. 3, 719-735 (in Persian with an abstract in English). | es_ES |
dc.description.references | Scott, I.M., Clarke, S.M., Wood, J.E., and Mur, L.A. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant. Physiol. 135, 1040-1049. | es_ES |
dc.description.references | Simkeshzadeh, N., Mobli, M., Etemadi, N., and Baninasab, B. (2011). Assessment of the frost resistance in some olive cultivars using visual injuries and chlorophyll fluorescence. J. Hortic. Sci. 24(2), 163-169 (in Persian with an abstract in English). | es_ES |
dc.description.references | Tahmasebi, A., and Pakniyat, H. (2015). Comparative analysis of some biochemical responses of winter and spring wheat cultivars under low temperature. Int. J. Agron. Agric. Res. 7, 14-22. | es_ES |
dc.description.references | Taïbi, K., Del Campo, A.D., Vilagrosa, A., Bellés, J.M., López-Gresa, M.P., López-Nicolás, J.M., and Mulet, J.M. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol. 18(1), 236. | es_ES |
dc.description.references | Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50(1), 571-599. | es_ES |
dc.description.references | Valitova, J., Renkova, A., Mukhitova, F., Dmitrieva, S., Beckett, R.P., and Minibayeva, F.V. (2019). Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. Plant. Physiol. Biochem. 142, 452-459. | es_ES |
dc.description.references | Woodward, F.I. (1987). Climate and Plant Distribution (Cambridge Studies in Ecology) (Cambridge, U.K.: Cambridge University Press), ISBN 0521282144. | es_ES |
dc.description.references | Zhang, J., Jiang, F., Yang, P., Li, J., Yan, G., and Hu, L. (2015). Responses of canola (Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. Acta Physiol. Plant. 37, 7. | es_ES |
dc.description.references | Zhang, S., Jiang, H., Peng, S., Korpelainen, H., and Li, C. (2010). Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J. Exp. Bot. 62(2), 675-686. | es_ES |
dc.description.references | Zhang, X., Da Silva, J.A.T., Niu, M., Li, M., He, C., Zhao, J., Zeng, X., Duan, J., and Ma, G. (2017). Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci. Rep. 7, 42165. | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |