- -

Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mohajeri, K. es_ES
dc.contributor.author Tabari, M. es_ES
dc.contributor.author Sadati, E. es_ES
dc.contributor.author Javanmard, Z. es_ES
dc.contributor.author Guidi , L. es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2023-11-29T19:02:07Z
dc.date.available 2023-11-29T19:02:07Z
dc.date.issued 2022-04 es_ES
dc.identifier.issn 1611-4426 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200357
dc.description.abstract [EN] European olive (Olea europaea L.), an evergreen woody plant, is relatively tolerant to cold and drought and its cultivation in semi-arid regions is an important strategy. In this work, the response of olive cultivar `Zard¿ to chilling and freezing are evaluated in a completely randomized design. Two-year-old olive seedlings were exposed at temperature of -10, -5, 2 and 10°C for 3 and 6 hours. Relative water content (RWC), water potential (WP), electrolyte leakage (EL), photosynthetic pigments content [including chlorophyll (Chl) a, Chl b, Chl a/b, total chlorophyll (ChlTOT) and carotenoid], ChlTOT/carotenoid ratio were determined at the end of the treatments. Likewise, the specific activities of some antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), were also measured in leaf extracts at the same time. The effect of temperature and duration of cold treatment and their interaction were significant on EL and SOD activity. Both pigment content and antioxidant enzyme activities were influenced by temperature but ChlTOT and enzymes of SOD and POX differed significantly in relation to the duration of the cold treatment. RWC and WP were changed by temperature and also by duration of cold treatment. With increasing the cold stress (from 10 to -10°C), RWC, WP and photosynthetic pigments decreased but SOD, POX and CAT activities increased. However, the increase in the activities of antioxidant enzymes was not enough to eliminate the damage induced by oxidative stress. This study evidenced as events of low temperature (below 10°C) during the cultivation of olive (cultivar `Zard¿) induced alteration in plant physiology. From a practical standpoint, the results could be used as approximate tools to determine whether the temperature conditions in a proposed new growing region are appropriate for achieving sustainable oil productivity and quality. es_ES
dc.language Inglés es_ES
dc.publisher International Society for Horticultural Science (ISHS) es_ES
dc.relation.ispartof European Journal of Horticultural Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidant enzymes es_ES
dc.subject Chilling es_ES
dc.subject Chlorophyll es_ES
dc.subject Cultivar 'Zard' of olive es_ES
dc.subject Electrolyte leakage es_ES
dc.subject Water potential es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.17660/eJHS.2022/021 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Mohajeri, K.; Tabari, M.; Sadati, E.; Javanmard, Z.; Guidi, L.; Vicente, O. (2022). Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings. European Journal of Horticultural Science. 87(2):1-10. https://doi.org/10.17660/eJHS.2022/021 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.17660/eJHS.2022/021 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 87 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\470871 es_ES
dc.description.references Afshari, H., Zahedi, R., Parvaneh, T., and Zadeh Bagheri, M. (2014). Influence of salicylic acid on proline levels, soluble sugars and ion leakage of two apricot cultivars under cold stress. J. Crop. Improv. 16(1), 127-138 (in Persian with an abstract in English). es_ES
dc.description.references Aki, F., Kazemitabar, K., Hashemi, H., and Najafi Zarini, H. (2016). Evaluated of effect of cold stress on proline, malondialdehyde and photosynthetic pigments in seedling stage of sesame (Sesamum indicum L.) genotypes. J. Crop Breed. 8(18), 166-175 (in Persian with an abstract in English). es_ES
dc.description.references Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6(9), 2026-2032. es_ES
dc.description.references Arias, N.S. (2015). Respuestas morfo-?siológicas a bajas temperaturas y disponibilidad de agua en variedades de Olea europaea L. Ph.D. thesis (Argentina: Universidad Nacional del Comahue). es_ES
dc.description.references Azzarello, E., Mugnai, S., Pandolfi, C., Masi, E., Marone, E., and Mancuso, S. (2009). Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees 23, 159-167. es_ES
dc.description.references Banerjee, A., Wani, S.H., and Roychoudhury, A. (2017). Epigenetic control of plant cold responses. Front. Plant Sci. 8, 1643. es_ES
dc.description.references Bernardini, E., and Visioli, F. (2017). High quality, good health: the case for olive oil. Eur. J. Lipid Sci. Technol. 119(1), 1500505. es_ES
dc.description.references Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. es_ES
dc.description.references Cakmak, I., and Horst, W. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max.). Physiol. Plant. 83(3), 463-468. es_ES
dc.description.references Campos, P.S., Quatrin, V., Ramulho, J.C., and Nunes, M.A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160(3), 283-292. es_ES
dc.description.references Campoy, J.A., Ruiz, D., and Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 130, 357-372 [CrossRef]. es_ES
dc.description.references Cansev, A., Gulen, H., and Eris, A. (2009). Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: Seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J. Agric. Sci. 147(1), 51-61. es_ES
dc.description.references Centeno, A., Memmi, H., Moreno, M.M., Moreno, C., and Pérez-López, D. (2018). Water relations in olive trees under cold conditions. Sci. Hortic. 235, 1-8. es_ES
dc.description.references de Carvalho, M.C. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal. Behav. 3, 156-165. es_ES
dc.description.references FAO (2021). Faostat.fao.org (accessed March 30, 2021). es_ES
dc.description.references Fathi, E., Tahmasebi, I., and Teimoori, N. (2016). Electrolyte leakage and catalase and peroxidase activity in chickpea genotypes seedling responding to low temperatures. Agroecol. J. 12, 25-34 (in Persian with an abstract in English). es_ES
dc.description.references Ghanati, F., Morita, A., and Yokota, H. (2002). Induction of suberin and increase of lignin content by excess boron in tobacco cell. Soil Sci. Plant Nutr. 48(3), 357-364. es_ES
dc.description.references Ghosh, T., Rai, M., Tyagi, W., and Challam, C. (2016). Seedling stage low temperature response in tolerant and susceptible rice genotypes suggests role of relative water content and members of OsSNAC gene family. Plant Signal. Behav. 11(5), e1138192. es_ES
dc.description.references Haberman, A., Bakhshian, O., Cerezo-Medina, S., Paltiel, J., Adler, C., Ben-Ari, G., Mercado, J.A., Pliego-Alfaro, F., Lavee, S., and Samach, A. (2017). A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environm. 40, 1263-1280 [CrossRef]. es_ES
dc.description.references Haddadian, M. (2011). Effect of spermine on inducing resistance to low temperature stress in olive plants cultivars 'Zard' and 'Roghani'. M.Sc. thesis (University of Guilan, Faculty of Agriculture) (in Persian with an abstract in English). es_ES
dc.description.references Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolrá, R., and Poschenrieder, C. (2019). Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Past. Sci. 70(3), 218-233. es_ES
dc.description.references Hatfield, J.L., and Prueger, J.H. (2015). Temperature extremes: Effect on plant growth and development. Weather. Clim. Extremes. 10, 4-10. es_ES
dc.description.references Henson, I.E., Mahalakshmi, V., Bidinger, F.R., and Alagars-Wamy, G. (1981). Genotypic variation in pearl miller (Pennisetum americanum L.) Leeke in the ability to accumulate abscisic acid in response on water stress. J. Exp. Bot. 32, 899-910. es_ES
dc.description.references Homapour, M., Hamedi, M., Moslehishad, M., and Safafar, H. (2014). Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon. Iran. Nutr. Food. Technol. 8(3), 121-130 (in Persian with an abstract in English). es_ES
dc.description.references Jan, N., Majeed, U., Andrabi, K.I., and John, R. (2018). Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiol. Plant. 40(4), 73. es_ES
dc.description.references Jiang, X., Song, Y., Xi, X., Guo, B., Ma, K., Wang, Z., and Zhang, Z. (2011). Physiological and biochemical responses to low temperature stress in hybrid clones of Populus ussuriensis Kom. × P. deltoides Bartr. Afr. J. Biotechnol. 10(82), 19011-19024. es_ES
dc.description.references Junpatiw, A., Lertrat, K., Lomthaisong, K., and Tangwongchai, R. (2013). Effects of steaming, boiling and frozen storage on carotenoid contents of various sweet corn cultivars. Int. Food Res. J. 20(5), 2219-2225. es_ES
dc.description.references Kiara, D.V., and Roy, D.N (1999). Oxidative stress and antioxidative defense with an emphasis on plants antioxidants. Environm. Rev. 7, 31-51. es_ES
dc.description.references Koubouris, G.C., Metzidakis, I.T., and Vasilakakis, M.D. (2010). Influence of cross-pollination on the development of parthenocarpic olive (Olea europaea) fruits (shotberries). Exp. Agric. 46, 67-76 [CrossRef]. es_ES
dc.description.references Kramer, P.J., and Boyer, J.S. (1995). Water relations of plants and soils (San Diego, U.S.A.: Academic Press), pp. 1-495. es_ES
dc.description.references Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst. 134, 279-295 [CrossRef]. es_ES
dc.description.references Li, X., Ahammed, G.J., Li, Z.X., Zhang, L., Wei, J.P., Yan, P., Zhang, L.P., and Han, W.Y. (2018). Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Sci. Hortic. 230, 155-160. es_ES
dc.description.references Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382. es_ES
dc.description.references Liu, W., Yu, K., He, T., Li, F., Zhang, D., and Liu, J. (2013). The low temperature induced physiological responses of Avena nuda L., A cold-tolerant plant species. Sci. World. J. 2013, Article ID 658793. es_ES
dc.description.references Miura, K., and Furumoto, T. (2013). Cold signaling and cold response in plants. Int. J. Molec. Sci. 14(3), 5312-5337. es_ES
dc.description.references Moshtaghi, E.A., Shahsavar, A.R., and Taslimpour, M.R. (2009). Ionic leakage as indicators of cold hardiness in olive (Olea europaea L.). World. Appl. Sci. J. 7, 1308-1310. es_ES
dc.description.references Muldrew, B., Acker, J.P., Elliott, J.A.W., and McGann, L.E. (2004). The water to ice transition: Implications for living cells. In Life in the Frozen State, B.J. Fuller, N. Lane, and E.E. Benson, eds. (Boca Raton: CRC Press), p. 67-108. es_ES
dc.description.references Nayyar, H., Bains, T.S., and Kumer, S. (2005). Chilling stressed chickpea seedling: effect of cold acclimation, calcium and abscise acid on cryoprotective solutes and oxidative damage. Environm. Exp. Bot. 54, 275-285. es_ES
dc.description.references Pearce, R. (2001). Plant Freezing and Damage. Ann. Bot. 87, 417-424 [CrossRef]. es_ES
dc.description.references Rafie-Rad, Z., Golchin, A., Tajvar, Y., and Fattahi Moghadam, J. (2018). The influence of super absorbent polymer aquasorb levels on vegetative and reproductive growth of Page Mandarin under drought stress condition. Crop. Improv. 3, 719-735 (in Persian with an abstract in English). es_ES
dc.description.references Scott, I.M., Clarke, S.M., Wood, J.E., and Mur, L.A. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant. Physiol. 135, 1040-1049. es_ES
dc.description.references Simkeshzadeh, N., Mobli, M., Etemadi, N., and Baninasab, B. (2011). Assessment of the frost resistance in some olive cultivars using visual injuries and chlorophyll fluorescence. J. Hortic. Sci. 24(2), 163-169 (in Persian with an abstract in English). es_ES
dc.description.references Tahmasebi, A., and Pakniyat, H. (2015). Comparative analysis of some biochemical responses of winter and spring wheat cultivars under low temperature. Int. J. Agron. Agric. Res. 7, 14-22. es_ES
dc.description.references Taïbi, K., Del Campo, A.D., Vilagrosa, A., Bellés, J.M., López-Gresa, M.P., López-Nicolás, J.M., and Mulet, J.M. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol. 18(1), 236. es_ES
dc.description.references Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50(1), 571-599. es_ES
dc.description.references Valitova, J., Renkova, A., Mukhitova, F., Dmitrieva, S., Beckett, R.P., and Minibayeva, F.V. (2019). Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. Plant. Physiol. Biochem. 142, 452-459. es_ES
dc.description.references Woodward, F.I. (1987). Climate and Plant Distribution (Cambridge Studies in Ecology) (Cambridge, U.K.: Cambridge University Press), ISBN 0521282144. es_ES
dc.description.references Zhang, J., Jiang, F., Yang, P., Li, J., Yan, G., and Hu, L. (2015). Responses of canola (Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. Acta Physiol. Plant. 37, 7. es_ES
dc.description.references Zhang, S., Jiang, H., Peng, S., Korpelainen, H., and Li, C. (2010). Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J. Exp. Bot. 62(2), 675-686. es_ES
dc.description.references Zhang, X., Da Silva, J.A.T., Niu, M., Li, M., He, C., Zhao, J., Zeng, X., Duan, J., and Ma, G. (2017). Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci. Rep. 7, 42165. es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem