- -

Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hass, Joachim es_ES
dc.contributor.author Ardid, S. es_ES
dc.contributor.author Sherfey, Jason es_ES
dc.contributor.author Kopell, Nancy es_ES
dc.date.accessioned 2023-12-01T19:00:50Z
dc.date.available 2023-12-01T19:00:50Z
dc.date.issued 2022-08 es_ES
dc.identifier.issn 0301-0082 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200420
dc.description.abstract [EN] Persistent activity, the maintenance of neural activation over short periods of time in cortical networks, is widely thought to underlie the cognitive function of working memory. A large body of modeling studies has reproduced this kind of activity using cell assemblies with strengthened synaptic connections. However, almost all of these studies have considered persistent activity within networks with homogeneous neurons and synapses, making it difficult to judge the validity of such model results for cortical dynamics, which is based on highly heterogeneous neurons. Here, we consider persistent activity in a detailed, strongly data-driven network model of the prefrontal cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent activity could not be reproduced in this model without incorporating further constraints. We identified three factors that prevent successful persistent activity: heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters of short-term synaptic plasticity and heterogeneity in the synaptic weights. We also discovered a general dynamic mechanism that prevents persistent activity in the presence of heterogeneities, namely a gradual drop-out of cell assembly neurons out of a bistable regime as input variability increases. Based on this mechanism, we found that persistent activity is recovered if heterogeneity is compensated, e.g., by a homeostatic plasticity mechanism. Cell assemblies shaped in this way may be potentially targeted by distinct inputs or become more responsive to specific tuning or spectral properties. Finally, we show that persistent activity in the model is robust against external noise, but the compensation of heterogeneities may prevent the dynamic generation of intrinsic in vivo-like irregular activity. These results may help informing the ongoing debate about the neural basis of working memory. es_ES
dc.description.sponsorship We thank Michelle McCarthy for valuable discussions during this research. This work was supported by the Army Research Office [Award no. ARO W911NF-12-R-0012-02] , Heidelberg Academy of Sciences and Humanities [6. Teilprogramm WIN-Programm] , Generalitat Valenciana Gen-T Program [Ref. CIDEGENT/2019/043] and Grant PID2020-120037GA-I00 funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Progress in Neurobiology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Persistent activity es_ES
dc.subject Working memory es_ES
dc.subject Prefrontal cortex es_ES
dc.subject Data-driven network model es_ES
dc.subject Heterogeneity es_ES
dc.subject Irregular activity es_ES
dc.title Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.pneurobio.2022.102287 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-120037GA-I00/ES/ALGORITMOS DE APRENDIZAJE BASADOS EN NEUROCIENCIA DE SISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//ARTIFICIAL GENERAL INTELLIGENCE:BEYOND DEEP LEARNING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARO//ARO W911NF-12-R-0012-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Hass, J.; Ardid, S.; Sherfey, J.; Kopell, N. (2022). Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities. Progress in Neurobiology. 215:1-18. https://doi.org/10.1016/j.pneurobio.2022.102287 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.pneurobio.2022.102287 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 215 es_ES
dc.identifier.pmid 35533813 es_ES
dc.relation.pasarela S\488664 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Army Research Office, EEUU es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Heidelberger Akademie der Wissenschaften es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem