- -

A simheuristic algorithm for the portfolio optimization problem with random returns and noisy covariances

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A simheuristic algorithm for the portfolio optimization problem with random returns and noisy covariances

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kizys, Renatas es_ES
dc.contributor.author Doering, Jana es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Polat, Onur es_ES
dc.contributor.author Calvet, Laura es_ES
dc.contributor.author Panadero, Javier es_ES
dc.date.accessioned 2023-12-04T19:02:19Z
dc.date.available 2023-12-04T19:02:19Z
dc.date.issued 2022-03 es_ES
dc.identifier.issn 0305-0548 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200493
dc.description.abstract [EN] The goal of the portfolio optimization problem is to minimize risk for an expected portfolio return by allocating weights to included assets. As the pool of investable assets grows, and additional constraints are imposed, the problem becomes NP-hard. Thus, metaheuristics are commonly employed for solving large instances of rich versions. However, metaheuristics do not fully account for random returns and noisy covariances, which renders them unrealistic in the presence of heightened uncertainty in financial markets. This paper aims to close this gap by proposing a simulation-optimization approach - specifically, a simheuristic algorithm that integrates a variable neighborhood search metaheuristic with Monte Carlo simulation - to deal with stochastic returns and noisy covariances modeled as random variables. Computational experiments performed on a well-established benchmark instance illustrate the advantages of our methodology and analyze how the solutions change in response to a varying degree of randomness, minimum required return, and probability of obtaining a return exceeding an investor-defined threshold. es_ES
dc.description.sponsorship This work has been partially funded by the Erasmus+ SEPIE program, Spain (2019-I-ES01-KA103-062602). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Operations Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Constrained portfolio optimization es_ES
dc.subject Metaheuristics es_ES
dc.subject Simulation es_ES
dc.subject Financial assets es_ES
dc.subject Variable neighborhood search es_ES
dc.subject Biased randomization es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A simheuristic algorithm for the portfolio optimization problem with random returns and noisy covariances es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cor.2021.105631 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/ es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2024-12-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Kizys, R.; Doering, J.; Juan, AA.; Polat, O.; Calvet, L.; Panadero, J. (2022). A simheuristic algorithm for the portfolio optimization problem with random returns and noisy covariances. Computers & Operations Research. 139:1-13. https://doi.org/10.1016/j.cor.2021.105631 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cor.2021.105631 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.relation.pasarela S\485727 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem