Mostrar el registro sencillo del ítem
dc.contributor.author | García-Méndez, J. | es_ES |
dc.contributor.author | Geißelbrecht, N. | es_ES |
dc.contributor.author | Eberl, T. | es_ES |
dc.contributor.author | Ardid, M. | es_ES |
dc.contributor.author | Ardid, S. | es_ES |
dc.date.accessioned | 2023-12-12T19:01:58Z | |
dc.date.available | 2023-12-12T19:01:58Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.issn | 1748-0221 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200651 | |
dc.description.abstract | [EN] ANTARES is currently the largest undersea neutrino telescope, located in the Mediterranean Sea and taking data since 2007. It consists of a 3D array of photo sensors, instrumenting about 10Mt of seawater to detect Cherenkov light induced by secondary particles from neutrino interactions. The event reconstruction and background discrimination is challenging and machin-elearning techniques are explored to improve the performance. In this contribution, two case studies using deep convolutional neural networks are presented. In the first one, this approach is used to improve the direction reconstruction of low-energy single-line events, for which the reconstruction of the azimuth angle of the incoming neutrino is particularly difficult. We observe a promising improvement in resolution over classical reconstruction techniques and expect to at least double our sensitivity in the low-energy range, important for dark matter searches. The second study employs deep learning to reconstruct the visible energy of neutrino interactions of all flavors and for the multi-line setup of the full detector. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of the Generalitat Valenciana Gen-T Program (ref. CIDEGENT/2019/043) and Ministerio de Ciencia e Innovacion/European Union (FEDER): Programa Estatal de Generacion de Conocimiento (ref. PGC2018-096663-B-C43). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Instrumentation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Analysis and statistical methods | es_ES |
dc.subject | Data processing methods | es_ES |
dc.subject | Neutrino detectors | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Cluster finding | es_ES |
dc.subject | Calibration and fitting methods | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Deep learning reconstruction in ANTARES | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1748-0221/16/09/C09018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//ARTIFICIAL GENERAL INTELLIGENCE:BEYOND DEEP LEARNING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//AYUDA CONTRATACION CIDEGENT INVESTIGADORES DE EXCELENCIA-ARDID RAMIREZ, JOAN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | García-Méndez, J.; Geißelbrecht, N.; Eberl, T.; Ardid, M.; Ardid, S. (2021). Deep learning reconstruction in ANTARES. Journal of Instrumentation. 16(9):1-7. https://doi.org/10.1088/1748-0221/16/09/C09018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1748-0221/16/09/C09018 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\464393 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |