- -

Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Jiménez, José-Manuel es_ES
dc.contributor.author Aguado, José V. es_ES
dc.contributor.author Bazin, Grégoire es_ES
dc.contributor.author ALBERO GABARDA, VICENTE es_ES
dc.contributor.author Borzacchiello, Domenico es_ES
dc.date.accessioned 2023-12-14T19:01:51Z
dc.date.available 2023-12-14T19:01:51Z
dc.date.issued 2023-06 es_ES
dc.identifier.issn 1572-8145 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200769
dc.description.abstract [EN] Digitization of large parts with tight geometric tolerances is a time-consuming process that requires a detailed scan of the outer surface and the acquisition and processing of massive data. In this work, we propose a methodology for fast digitization using a partial scan in which large regions remain unmeasured. Our approach capitalizes on a database of fully scanned parts from which we extract a low-dimensional description of the shape variability using Statistical Shape Analysis. This lowdimensional description allows an accurate representation of any sample in the database with few independent parameters. Therefore, we propose a reconstruction algorithm that takes as input an incomplete measurement (faster than a complete digitization), identifies the statistical shape parameters and outputs a full scan reconstruction. We showcase an application to the digitization of large aeronautical fuselage panels. A statistical shape model is constructed from a database of 793 shapes that were completely digitized, with a point cloud of about 16 million points for each shape. Tests carried out at the manufacturing facility showed an overall reduction in the digitization time by 80% (using a partial digitization of 3 million points per shape) while keeping a high accuracy (reconstruction precision of 0.1mm) on the reconstructed surface. es_ES
dc.description.sponsorship The authors want to thank Stelia Aerospace for providing the data and their helpful support through the project, and also the financial support of the regional research consortium RFI Atlanstic2020 in Pays de la Loire, France. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Intelligent Manufacturing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Statistical shape analysis es_ES
dc.subject Shape reconstruction es_ES
dc.subject Surface digitization es_ES
dc.subject Sparse sampling es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10845-022-01918-z es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Navarro-Jiménez, J.; Aguado, JV.; Bazin, G.; Albero Gabarda, V.; Borzacchiello, D. (2023). Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes. Journal of Intelligent Manufacturing. 34(5):2345-2358. https://doi.org/10.1007/s10845-022-01918-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10845-022-01918-z es_ES
dc.description.upvformatpinicio 2345 es_ES
dc.description.upvformatpfin 2358 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\465898 es_ES
dc.contributor.funder Ministère de la Culture, Francia es_ES
dc.description.references Ballester, A., Piérola, A., Parrilla, E., Izquierdo, M., Uriel, J., Nácher, B., Ortiz, V., Gonzalez, J. C., Page, A., & Alemany, S. (2017). Fast, portable and low-cost 3d foot digitizers: Validity and reliability of measurements. Proceedings of 3DBODY. TECH (pp. 11–12). es_ES
dc.description.references Barrault, M., Yvon, M., Nguyen, N. C., & Patera, A. T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9), 667–672. es_ES
dc.description.references Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522. es_ES
dc.description.references Berger, M., Andrea, T., Lee, S., Pierre, A., Joshua, L., Andrei, S., & Claudio, S. (2014). State of the art in surface reconstruction from point clouds. In Eurographics 2014—State of the art reports (Vol. 1, pp. 161–185). es_ES
dc.description.references Bernard, F., Salamanca, L., Thunberg, J., Tack, A., Jentsch, D., Lamecker, H., et al. (2017). Shape-aware surface reconstruction from sparse 3d point-clouds. Medical Image Analysis, 38, 77–89. es_ES
dc.description.references Bookstein, F. L. (1997). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press. es_ES
dc.description.references Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current Science, 78(7), 808–817. es_ES
dc.description.references Chaturantabut, S., & Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5), 2737–2764. es_ES
dc.description.references Cohen, Y., Faccio, M., Pilati, F., & Yao, X. (2019). Design and management of digital manufacturing and assembly systems in the industry 4.0 era. The International Journal of Advanced Manufacturing Technology, 105(9), 3565–3577. es_ES
dc.description.references Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1992). Training models of shape from sets of examples. In D. Hogg, & R. Boyle (Eds.), BMVC92 (pp. 9–18). Springer London. es_ES
dc.description.references D’Apuzzo, N. (2006). Overview of 3d surface digitization technologies in Europe. In Three-dimensional image capture and applications VII (Vol. 6056, pp. 605605). International Society for Optics and Photonics. es_ES
dc.description.references Davies, R. H. (2002). Learning shape: Optimal models for analysing natural variability. University of Manchester Manchester. es_ES
dc.description.references Drouot, A., Zhao, R., Irving, L., Sanderson, D., & Ratchev, S. (2018). Measurement assisted assembly for high accuracy aerospace manufacturing. 16th IFAC symposium on information control problems in manufacturing INCOM 2018. IFAC-PapersOnLine (Vol. 51, No. 11, pp. 393–398). es_ES
dc.description.references Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In W. Schempp, & K. Zeller (Eds.), Constructive theory of functions of several variables (pp. 85–100). Springer. es_ES
dc.description.references Feng, J.C.-X., & Wang, X. (2002). Digitizing uncertainty modeling for reverse engineering applications: Regression versus neural networks. Journal of Intelligent Manufacturing, 13(3), 189–199. es_ES
dc.description.references Gao, J., Gindy, N., & Chen, X. (2006). An automated GD&T inspection system based on non-contact 3d digitization. International Journal of Production Research, 44(1), 117–134. es_ES
dc.description.references Guo, G., Jiang, T. T., Wang, Y. Z., & Gao, W. (2013). 2-D shape completion with shape priors. Chinese Science Bulletin, 58(27), 3430–3436. es_ES
dc.description.references Hao, R., Lu, B., Cheng, Y., Li, X., & Huang, B. (2021). A steel surface defect inspection approach towards smart industrial monitoring. Journal of Intelligent Manufacturing, 32(7), 1833–1843. es_ES
dc.description.references Heimann, T., & Meinzer, H.-P. (2009). Statistical shape models for 3d medical image segmentation: A review. Medical Image Analysis, 13(4), 543–563. es_ES
dc.description.references Jolliffe, I. T. (2002). Principal components in regression analysis. Principal Component Analysis, 167–198. es_ES
dc.description.references Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. es_ES
dc.description.references Khalfaoui, S., Seulin, R., Fougerolle, Y., & Fofi, D. (2013). An efficient method for fully automatic 3d digitization of unknown objects. Computers in Industry, 64(9), 1152–1160 (Special Issue: 3D Imaging in Industry). es_ES
dc.description.references Kurfess, T. R., Saldana, C., Saleeby, K., & Dezfouli, M. P. (2020). A review of modern communication technologies for digital manufacturing processes in industry 4 0. Journal of Manufacturing Science and Engineering, 142(11), 110815. es_ES
dc.description.references Lauzeral, N., Borzacchiello, D., Kugler, M., George, D., Rémond, Y., Hostettler, A., & Chinesta, F. (2019). Shape parametrization of bio-mechanical finite element models based on medical images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 7(5–6), 480–489. es_ES
dc.description.references Lee J., et al. (2020). Industrial AI. Applications with Sustainable Performance. es_ES
dc.description.references Marton, Z. C., Rusu, R. B., & Beetz, M. (2009). On fast surface reconstruction methods for large and noisy point clouds. In 2009 IEEE international conference on robotics and automation (pp. 3218–3223). es_ES
dc.description.references Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. Zeitschrift für angewandte Mathematik und Physik ZAMP, 30(2), 292–304. es_ES
dc.description.references Mian, S. H., & Al-Ahmari, A. (2019). Comparative analysis of different digitization systems and selection of best alternative. Journal of Intelligent Manufacturing, 30(5), 2039–2067. es_ES
dc.description.references Panczuk, R., Foissac, P.-Y. (2008). Method and device for machining panels, E.U. Patent EP1689558B1. es_ES
dc.description.references Pauly, M., Mitra, N. J., Giesen, J., Gross, M. H., & Guibas, L. J. (2005). Example-based 3d scan completion. In Symposium on geometry processing, number CONF (pp. 23–32). es_ES
dc.description.references Pimenov, D. Y., Andrés, B., & Tadeusz, M. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29(5), 1045–1061. es_ES
dc.description.references Poulhaon, F., Leygue, A., Rauch, M., Hascoet, J.-Y., & Chinesta, F. (2014). Simulation-based adaptative toolpath generation in milling processes. International Journal of Machining and Machinability of Materials, 15(3–4), 263–284. es_ES
dc.description.references Qian, J., Feng, S., Mingzhu, X., Tao, T., Shang, Y., Chen, Q., & Zuo, C. (2021). High-resolution real-time 360$$^{\circ }$$ 3d surface defect inspection with fringe projection profilometry. Optics and Lasers in Engineering, 137, 106382. es_ES
dc.description.references Stockman, G., & Shapiro, L. G. (2001). Computer vision. Prentice Hall PTR. es_ES
dc.description.references Shen, C.-H., Hongbo, F., Chen, K., & Shi-Min, H. (2012). Structure recovery by part assembly. ACM Transactions on Graphics (TOG), 31(6), 1–11. es_ES
dc.description.references Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 31(3), 759–776. es_ES
dc.description.references Teutsch, C. (2007). Model-based analysis and evaluation of point sets from optical 3D laser scanners. Shaker. es_ES
dc.description.references Wang, Y., Cao, L., Bai, Z., Reed, M. P., Rupp, J. D., Hoff, C. N., & Hu, J. (2016). A parametric ribcage geometry model accounting for variations among the adult population. Journal of Biomechanics, 49(13), 2791–2798. es_ES
dc.description.references Xu, R., Zhou, X., Hirano, Y., Tachibana, R., Hara, T., Kido, S., & Fujita, H. (2013). Particle system based adaptive sampling on spherical parameter space to improve the MDL method for construction of statistical shape models. Computational and Mathematical Methods in Medicine, 2013. es_ES
dc.description.references Zhang, K., Cao, L., Fanta, A., Reed, M. P., Neal, M., Wang, J.-T., et al. (2017). An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women. Journal of Biomechanics, 60, 253–260. es_ES
dc.description.references Židek, K., Modrák, V., Pitel, J., & Šoltysová, Z. (2020). The digitization of quality control operations with cloud platform computing technologies (pp. 305–334). Springer. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem