Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Jiménez, José-Manuel | es_ES |
dc.contributor.author | Aguado, José V. | es_ES |
dc.contributor.author | Bazin, Grégoire | es_ES |
dc.contributor.author | ALBERO GABARDA, VICENTE | es_ES |
dc.contributor.author | Borzacchiello, Domenico | es_ES |
dc.date.accessioned | 2023-12-14T19:01:51Z | |
dc.date.available | 2023-12-14T19:01:51Z | |
dc.date.issued | 2023-06 | es_ES |
dc.identifier.issn | 1572-8145 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200769 | |
dc.description.abstract | [EN] Digitization of large parts with tight geometric tolerances is a time-consuming process that requires a detailed scan of the outer surface and the acquisition and processing of massive data. In this work, we propose a methodology for fast digitization using a partial scan in which large regions remain unmeasured. Our approach capitalizes on a database of fully scanned parts from which we extract a low-dimensional description of the shape variability using Statistical Shape Analysis. This lowdimensional description allows an accurate representation of any sample in the database with few independent parameters. Therefore, we propose a reconstruction algorithm that takes as input an incomplete measurement (faster than a complete digitization), identifies the statistical shape parameters and outputs a full scan reconstruction. We showcase an application to the digitization of large aeronautical fuselage panels. A statistical shape model is constructed from a database of 793 shapes that were completely digitized, with a point cloud of about 16 million points for each shape. Tests carried out at the manufacturing facility showed an overall reduction in the digitization time by 80% (using a partial digitization of 3 million points per shape) while keeping a high accuracy (reconstruction precision of 0.1mm) on the reconstructed surface. | es_ES |
dc.description.sponsorship | The authors want to thank Stelia Aerospace for providing the data and their helpful support through the project, and also the financial support of the regional research consortium RFI Atlanstic2020 in Pays de la Loire, France. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Intelligent Manufacturing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Statistical shape analysis | es_ES |
dc.subject | Shape reconstruction | es_ES |
dc.subject | Surface digitization | es_ES |
dc.subject | Sparse sampling | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10845-022-01918-z | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Navarro-Jiménez, J.; Aguado, JV.; Bazin, G.; Albero Gabarda, V.; Borzacchiello, D. (2023). Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes. Journal of Intelligent Manufacturing. 34(5):2345-2358. https://doi.org/10.1007/s10845-022-01918-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10845-022-01918-z | es_ES |
dc.description.upvformatpinicio | 2345 | es_ES |
dc.description.upvformatpfin | 2358 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\465898 | es_ES |
dc.contributor.funder | Ministère de la Culture, Francia | es_ES |
dc.description.references | Ballester, A., Piérola, A., Parrilla, E., Izquierdo, M., Uriel, J., Nácher, B., Ortiz, V., Gonzalez, J. C., Page, A., & Alemany, S. (2017). Fast, portable and low-cost 3d foot digitizers: Validity and reliability of measurements. Proceedings of 3DBODY. TECH (pp. 11–12). | es_ES |
dc.description.references | Barrault, M., Yvon, M., Nguyen, N. C., & Patera, A. T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9), 667–672. | es_ES |
dc.description.references | Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522. | es_ES |
dc.description.references | Berger, M., Andrea, T., Lee, S., Pierre, A., Joshua, L., Andrei, S., & Claudio, S. (2014). State of the art in surface reconstruction from point clouds. In Eurographics 2014—State of the art reports (Vol. 1, pp. 161–185). | es_ES |
dc.description.references | Bernard, F., Salamanca, L., Thunberg, J., Tack, A., Jentsch, D., Lamecker, H., et al. (2017). Shape-aware surface reconstruction from sparse 3d point-clouds. Medical Image Analysis, 38, 77–89. | es_ES |
dc.description.references | Bookstein, F. L. (1997). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press. | es_ES |
dc.description.references | Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current Science, 78(7), 808–817. | es_ES |
dc.description.references | Chaturantabut, S., & Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5), 2737–2764. | es_ES |
dc.description.references | Cohen, Y., Faccio, M., Pilati, F., & Yao, X. (2019). Design and management of digital manufacturing and assembly systems in the industry 4.0 era. The International Journal of Advanced Manufacturing Technology, 105(9), 3565–3577. | es_ES |
dc.description.references | Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1992). Training models of shape from sets of examples. In D. Hogg, & R. Boyle (Eds.), BMVC92 (pp. 9–18). Springer London. | es_ES |
dc.description.references | D’Apuzzo, N. (2006). Overview of 3d surface digitization technologies in Europe. In Three-dimensional image capture and applications VII (Vol. 6056, pp. 605605). International Society for Optics and Photonics. | es_ES |
dc.description.references | Davies, R. H. (2002). Learning shape: Optimal models for analysing natural variability. University of Manchester Manchester. | es_ES |
dc.description.references | Drouot, A., Zhao, R., Irving, L., Sanderson, D., & Ratchev, S. (2018). Measurement assisted assembly for high accuracy aerospace manufacturing. 16th IFAC symposium on information control problems in manufacturing INCOM 2018. IFAC-PapersOnLine (Vol. 51, No. 11, pp. 393–398). | es_ES |
dc.description.references | Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In W. Schempp, & K. Zeller (Eds.), Constructive theory of functions of several variables (pp. 85–100). Springer. | es_ES |
dc.description.references | Feng, J.C.-X., & Wang, X. (2002). Digitizing uncertainty modeling for reverse engineering applications: Regression versus neural networks. Journal of Intelligent Manufacturing, 13(3), 189–199. | es_ES |
dc.description.references | Gao, J., Gindy, N., & Chen, X. (2006). An automated GD&T inspection system based on non-contact 3d digitization. International Journal of Production Research, 44(1), 117–134. | es_ES |
dc.description.references | Guo, G., Jiang, T. T., Wang, Y. Z., & Gao, W. (2013). 2-D shape completion with shape priors. Chinese Science Bulletin, 58(27), 3430–3436. | es_ES |
dc.description.references | Hao, R., Lu, B., Cheng, Y., Li, X., & Huang, B. (2021). A steel surface defect inspection approach towards smart industrial monitoring. Journal of Intelligent Manufacturing, 32(7), 1833–1843. | es_ES |
dc.description.references | Heimann, T., & Meinzer, H.-P. (2009). Statistical shape models for 3d medical image segmentation: A review. Medical Image Analysis, 13(4), 543–563. | es_ES |
dc.description.references | Jolliffe, I. T. (2002). Principal components in regression analysis. Principal Component Analysis, 167–198. | es_ES |
dc.description.references | Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. | es_ES |
dc.description.references | Khalfaoui, S., Seulin, R., Fougerolle, Y., & Fofi, D. (2013). An efficient method for fully automatic 3d digitization of unknown objects. Computers in Industry, 64(9), 1152–1160 (Special Issue: 3D Imaging in Industry). | es_ES |
dc.description.references | Kurfess, T. R., Saldana, C., Saleeby, K., & Dezfouli, M. P. (2020). A review of modern communication technologies for digital manufacturing processes in industry 4 0. Journal of Manufacturing Science and Engineering, 142(11), 110815. | es_ES |
dc.description.references | Lauzeral, N., Borzacchiello, D., Kugler, M., George, D., Rémond, Y., Hostettler, A., & Chinesta, F. (2019). Shape parametrization of bio-mechanical finite element models based on medical images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 7(5–6), 480–489. | es_ES |
dc.description.references | Lee J., et al. (2020). Industrial AI. Applications with Sustainable Performance. | es_ES |
dc.description.references | Marton, Z. C., Rusu, R. B., & Beetz, M. (2009). On fast surface reconstruction methods for large and noisy point clouds. In 2009 IEEE international conference on robotics and automation (pp. 3218–3223). | es_ES |
dc.description.references | Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. Zeitschrift für angewandte Mathematik und Physik ZAMP, 30(2), 292–304. | es_ES |
dc.description.references | Mian, S. H., & Al-Ahmari, A. (2019). Comparative analysis of different digitization systems and selection of best alternative. Journal of Intelligent Manufacturing, 30(5), 2039–2067. | es_ES |
dc.description.references | Panczuk, R., Foissac, P.-Y. (2008). Method and device for machining panels, E.U. Patent EP1689558B1. | es_ES |
dc.description.references | Pauly, M., Mitra, N. J., Giesen, J., Gross, M. H., & Guibas, L. J. (2005). Example-based 3d scan completion. In Symposium on geometry processing, number CONF (pp. 23–32). | es_ES |
dc.description.references | Pimenov, D. Y., Andrés, B., & Tadeusz, M. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29(5), 1045–1061. | es_ES |
dc.description.references | Poulhaon, F., Leygue, A., Rauch, M., Hascoet, J.-Y., & Chinesta, F. (2014). Simulation-based adaptative toolpath generation in milling processes. International Journal of Machining and Machinability of Materials, 15(3–4), 263–284. | es_ES |
dc.description.references | Qian, J., Feng, S., Mingzhu, X., Tao, T., Shang, Y., Chen, Q., & Zuo, C. (2021). High-resolution real-time 360$$^{\circ }$$ 3d surface defect inspection with fringe projection profilometry. Optics and Lasers in Engineering, 137, 106382. | es_ES |
dc.description.references | Stockman, G., & Shapiro, L. G. (2001). Computer vision. Prentice Hall PTR. | es_ES |
dc.description.references | Shen, C.-H., Hongbo, F., Chen, K., & Shi-Min, H. (2012). Structure recovery by part assembly. ACM Transactions on Graphics (TOG), 31(6), 1–11. | es_ES |
dc.description.references | Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 31(3), 759–776. | es_ES |
dc.description.references | Teutsch, C. (2007). Model-based analysis and evaluation of point sets from optical 3D laser scanners. Shaker. | es_ES |
dc.description.references | Wang, Y., Cao, L., Bai, Z., Reed, M. P., Rupp, J. D., Hoff, C. N., & Hu, J. (2016). A parametric ribcage geometry model accounting for variations among the adult population. Journal of Biomechanics, 49(13), 2791–2798. | es_ES |
dc.description.references | Xu, R., Zhou, X., Hirano, Y., Tachibana, R., Hara, T., Kido, S., & Fujita, H. (2013). Particle system based adaptive sampling on spherical parameter space to improve the MDL method for construction of statistical shape models. Computational and Mathematical Methods in Medicine, 2013. | es_ES |
dc.description.references | Zhang, K., Cao, L., Fanta, A., Reed, M. P., Neal, M., Wang, J.-T., et al. (2017). An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women. Journal of Biomechanics, 60, 253–260. | es_ES |
dc.description.references | Židek, K., Modrák, V., Pitel, J., & Šoltysová, Z. (2020). The digitization of quality control operations with cloud platform computing technologies (pp. 305–334). Springer. | es_ES |