- -

Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández-Sarría, Alfonso es_ES
dc.contributor.author López- Cortés, I es_ES
dc.contributor.author Marti-Gavila, Jesus es_ES
dc.contributor.author Estornell Cremades, Javier es_ES
dc.date.accessioned 2023-12-15T19:01:04Z
dc.date.available 2023-12-15T19:01:04Z
dc.date.issued 2022-10 es_ES
dc.identifier.issn 0255-660X es_ES
dc.identifier.uri http://hdl.handle.net/10251/200798
dc.description.abstract [EN] Remote sensing techniques are increasingly used for crop monitoring to improve the profitability of plantations. These studies are mainly based on spectral information recorded by satellites or unmanned aerial vehicles. However, the development of Earth Observation Systems capable of retrieving 3D point clouds at an affordable cost enables the possibility of exploring new approaches in agriculture. In this context, more research is required to analyze the capability of 3D data for inventory, management and prediction of inputs (water, fertilizers and pesticides) and outputs (production, biomass) of fruit plantations. To do this, the complete representation of each tree contribute to extract the main geometric parameters. The objective of this work is to obtain regression models to estimate total height (H-t), crown height (H-c), stem diameter (D-s), crown diameter (D-c), stem volume (V-s) and crown volume (V-c) from 45 walnut specimens. For this, 3D models were computed for these trees by applying ground-based Structure from Motion (SfM). A circular photogrammetric survey of each tree was carried out using a standard digital camera and three-dimensional point clouds were retrieved for each tree. From these data, the tree parameters were computed. Linear regression models were obtained to estimate H-t, H-c, D-s, D-c, V-s and V-c, with R-2 values between 0.89 and 0.99. The results showed accurate fits between field parameters and those derived from 3D point clouds retrieved from SfM technique, indicating the applicability of this cost-effective method to model walnut trees and to extract their accurate parameters without costly field campaigns. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of the Indian Society of Remote Sensing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Structure from motion (SfM) es_ES
dc.subject Automated photogrammetry es_ES
dc.subject Walnut tree es_ES
dc.subject Precision agriculture es_ES
dc.subject Geometrical parameters es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12524-022-01576-x es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Fernández-Sarría, A.; López- Cortés, I.; Marti-Gavila, J.; Estornell Cremades, J. (2022). Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM). Journal of the Indian Society of Remote Sensing. 50(10):1931-1944. https://doi.org/10.1007/s12524-022-01576-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12524-022-01576-x es_ES
dc.description.upvformatpinicio 1931 es_ES
dc.description.upvformatpfin 1944 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\468995 es_ES
dc.description.references Arnó, J., Masip, J., & Rosell-Polo, J. R. (2015). Influence of the scanned side of the row in terrestrial laser sensor applications in vineyards: Practical consequences. Precision Agriculture, 16(2), 119–128. https://doi.org/10.1007/s11119-014-9364-7 es_ES
dc.description.references Arnó, J., Vallès, J. M., Llorens, J., Sanz, R., Masip, J., Palacín, J., & Rosell-Polo, J. R. (2013). Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture, 14(3), 290–306. https://doi.org/10.1007/s11119-012-9295-0 es_ES
dc.description.references Auat Cheein, F., Guivant, J., Sanz, R., Escolà, A., Yandún, F., Torres-Torriti, M., & Rosell-Polo, J. R. (2015). Real-time approaches for characterization of fully and partially scanned canopies in groves. COMPAG, 118, 361–371. https://doi.org/10.1016/j.compag.2015.09.017 es_ES
dc.description.references Bork, E. W., & Su, J. G. (2007). Integrating LiDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sensing of Environment, 111, 11–24. https://doi.org/10.1016/j.rse.2007.03.011 es_ES
dc.description.references Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H., Herold, M., & Kooistra, L. (2019). Non-destructivetree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sensing of Environment, 233, 111355. https://doi.org/10.1016/j.rse.2019.111355 es_ES
dc.description.references Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32, 1309–1332. https://doi.org/10.1109/tro.2016.2624754 es_ES
dc.description.references Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., & Kaasalainen, M. (2015). Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution, 6, 198–208. https://doi.org/10.1111/2041-210X.12301 es_ES
dc.description.references Chang, A., Jung, J., Maeda, M. M., & Landivar, J. (2017). Crop height monitoring with digital imagery from unmanned aerial system (UAS). COMPAG, 141, 232–237. https://doi.org/10.1016/j.compag.2017.07.008 es_ES
dc.description.references Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129–143. https://doi.org/10.1016/j.rse.2016.05.019 es_ES
dc.description.references Dalla, A., Rex, F., Almeida, D., Sanquetta, C., Silva, C., Moura, M., Wilkinson, B., et al. (2020). Measuring individual tree diameter and height using gatoreyehigh-density UAV-lidar in an integrated crop-livestock-forest system. Remote Sensing, 12, 863. https://doi.org/10.3390/rs12050863 es_ES
dc.description.references De Eugenio, A., Fernández-Landa, A., & Merino-de-Miguel, S. (2018). 3D models from terrestrial photogrammetry in the estimation of forest inventory variables. Revista de Teledetección, 51, 113–124. https://doi.org/10.4995/raet.2018.9174 es_ES
dc.description.references Díaz-Varela, R., de la Rosa, R., León, L., & Zarco-Tejada, P. (2015). High-Resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7(4), 4213–4232. https://doi.org/10.3390/rs70404213 es_ES
dc.description.references Dong, J., Burnham, J.G., Boots, B., Rains, G., Dellaert, F. (2017). 4D crop monitoring: Spatio-temporal reconstruction for agriculture. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3878–3885. https://doi.org/10.1109/ICRA.2017.7989447. es_ES
dc.description.references Ehlert, D., Heisig, M., & Adamek, R. (2010). Suitability of a laser rangefinder to characterize winter wheat. Precision Agriculture, 11, 650–663. es_ES
dc.description.references Escolà, A., Martínez-Casasnovas, J. A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., Pascual, M., Gregorio, E., & Rosell-Polo, J. R. (2017). Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agriculture, 18, 111–132. https://doi.org/10.1007/s11119-016-9474-5 es_ES
dc.description.references Estornell, J., Ruiz, L. A., Velázquez-Martí, B., López-Cortés, I., Salazar, D., & Fernández-Sarría, A. (2015). Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass and Bioenergy, 81, 315–321. https://doi.org/10.1016/j.biombioe.2015.07.015 es_ES
dc.description.references Estornell, J., Velázquez-Martí, A., Fernández-Sarría, A., López-Cortés, I., Martí-Gavilá, J., & Salazar, D. (2017). Estimation of structural attributes of walnut trees based on terrestrial laser scanning. Revista de Teledetección, 0(48), 67–76. https://doi.org/10.4995/raet.2017.7429 es_ES
dc.description.references Estornell, J., Velázquez-Martí, B., Fernández-Sarría, A., & Martí, J. (2018). Lidar methods for measurement of trees in urban forests. Journal of Applied Remote Sensing, 12(4), 046009. https://doi.org/10.1117/1.JRS.12.046009 es_ES
dc.description.references Fernández-Sarría, A., López-Cortés, I., Estornell, J., Velázquez-Martí, B., & Salazar, D. (2019). Estimating residual biomass of olive tree crops using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 75, 163–170. https://doi.org/10.1016/j.jag.2018.10.019 es_ES
dc.description.references Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., & Recio, J. A. (2013). Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. COMPAG, 90, 176–185. es_ES
dc.description.references Gené-Mola, J., Gregorio López, E., Auat Cheein, F. A., Guevara, J., Llorens Calveras, J., Sanz Cortiella, R., & Rosell Polo, J. R. (2020). Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. COMPAG, 168, 105121. https://doi.org/10.1016/j.compag.2019.105121 es_ES
dc.description.references Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J. R., Gallart, M., & Escolà, A. (2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors, 14, 691–708. https://doi.org/10.3390/s140100691 es_ES
dc.description.references Goesele, M., Snavely, N., Seitz, S.M., Curless, B., Hoppe, H. (2007). Multi-view stereo for community photo collections. In Proceedings of the11th International Conference on Computer Vision, Rio de Janeiro, Brazil pp. 1–8. https://doi.org/10.1109/ICCV.2007.4408933. es_ES
dc.description.references Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 15(1), 44–56. https://doi.org/10.1007/s11119-013-9335-4 es_ES
dc.description.references Gonzalez de Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R., Disney, M., Manuri, S., et al. (2018). Estimation of above ground biomass of large tropical trees with terrestrial LiDAR. Methods in Ecology and Evolution, 9(2), 223–234. https://doi.org/10.1111/2041-210X.12904 es_ES
dc.description.references Guerra-Hernández, J., Cosenza, D. N., Estraviz Rodriguez, L. C., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. (2018). Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15–16), 5211–5235. https://doi.org/10.1080/01431161.2018.1486519 es_ES
dc.description.references Hadas, E., Borkowski, A., Estornell, J., & Tymkow, P. (2017). Automatic estimation of olive tree dendrometric parameters based on airborne laser scanning data using alpha-shape and principal component analysis. GIScience & Remote Sensing, 54(6), 898–917. https://doi.org/10.1080/15481603.2017.1351148 es_ES
dc.description.references Hargreaves, G. H. (1994). Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132) es_ES
dc.description.references Heinzel, J., & Huber, M. O. (2017). Tree stem diameter estimation from volumetric TLS image data. Remote Sensing, 9, 614. https://doi.org/10.3390/rs9060614 es_ES
dc.description.references Jay, S., Rabatel, G., Hadoux, X., Moura, D., & Gorretta, N. (2015). In-field crop row phenotyping from 3D modeling performed using Structure from motion. COMPAG, 110, 70–77. es_ES
dc.description.references Jenkins, J., Chojnack, D., Heath, L., Birdsey, R. (2004). Comprehensive database of diameter-based biomass regressions for north american tree Species; United States Forest Service, Northeastern Research Station, p. 45. es_ES
dc.description.references Jiménez-Brenes, F. M., López-Granados, F., Castro, A. I., Torres-Sánchez, J., Serrano, N., & Peña, J. M. (2017). Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods, 13, 1–15. https://doi.org/10.1186/s13007-017-0205-3 es_ES
dc.description.references Kankare, I., Räty, M., Yu, X., Holopainen, M., Vastaranta, M., Kantola, T., Hyyppä, J., Hyyppä, H., Alho, P., & Viitala, R. (2013). Single tree biomass modelling using airborne laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 66–73. https://doi.org/10.1016/j.isprsjprs.2013.08.008 es_ES
dc.description.references Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). LiDAR remote sensing for ecosystem studies. BioScience, 52, 19–30. es_ES
dc.description.references Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakola, A., Guan, F., Holopainen, M., & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63–77. es_ES
dc.description.references López-Cortés, I., Martí-Gavilá, J., Estornell, J., Fernández-Sarría, A. (2019). Comparación de parámetros de olivos a partir de UAV y datos LiDAR aéreos. In Proceedings of XVIII Congreso de la Asociación Española de Teledetección, Valladolid, pp. 24–27 September 2019; pp. 439–442. es_ES
dc.description.references Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 es_ES
dc.description.references Maltamo, M., Räty, J., Korhonen, L., Kotivuori, E., Kukkonen, M., Peltola, H., Kangas, J., & Packalen, P. (2020). Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images. European Journal of Remote Sensing. https://doi.org/10.1080/22797254.2020.1816142 es_ES
dc.description.references Miao, Y., Mulla, D. J., Randall, G. W., Vetsch, J. A., & Vintila, R. (2009). Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture, 10, 45–62. https://doi.org/10.1007/s11119-008-9091-z es_ES
dc.description.references Miller, J., Morgenroth, J., & Gomez, C. (2015). 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban for Urban Green, 14(4), 932–940. https://doi.org/10.1016/j.ufug.2015.09.001 es_ES
dc.description.references Ministerio de Agricultura, Pesca y Alimentación (2019). Encuesta sobre superficies y rendimientos cultivos (ESYRCE). Encuesta de marco de áreas de España. p. 178. Retrieved 15 Sept 2021 from https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/. es_ES
dc.description.references Miranda-Fuentes, A., Llorens, J., Rodriguez-Lizana, A., Cuenca, A., Gil, E., Blanco-Roldán, G. L., & Gil-Ribes, J. A. (2016). Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes. STOTEN, 568, 296–305. https://doi.org/10.1016/j.scitotenv.2016.06.013 es_ES
dc.description.references Moorthy, I., Miller, J. R., Jimenez Berni, J. A., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204–214. https://doi.org/10.1016/j.agrformet.2010.10.005 es_ES
dc.description.references Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247–259. https://doi.org/10.1016/j.rse.2018.11.005 es_ES
dc.description.references Palacín, J., Pallejà, T., Tresanchez, M., Sanz, R., Llorens, J., Ribes-Dasi, M., Masip, J., Arnó, J., Escolà, A., & Rosell, J. R. (2007). Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Transactions on Instrumentation and Measurement, 56(4), 1377–1383. https://doi.org/10.1109/TIM.2007.900126 es_ES
dc.description.references Pierzchala, M., Giguère, P., & Astrup, R. (2018). Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-slam. COMPAG, 145, 217–225. https://doi.org/10.1016/j.compag.2017.12.034 es_ES
dc.description.references Pitkänen, T. P., Raumonen, P., & Kangas, A. (2019). Measuring stem diameters with TLS in boreal forests complementary fitting procedure. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 294–306. https://doi.org/10.1016/j.isprsjprs.2018.11.027 es_ES
dc.description.references Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne LiDAR. Biomass and Bioenergy, 31(9), 646–655. https://doi.org/10.1016/j.biombioe.2007.06.022 es_ES
dc.description.references Sanz, R., Llorens, J., Escolà, A., Arnó, J., Planas, S., Román, C., & Rosell-Polo, J. R. (2018). LiDAR and non-LiDAR-based canopy parameters to estimate the leaf area in fruit trees and vineyard. Agricultural and Forest Meteorology, 260–261, 229–239. https://doi.org/10.1016/j.agrformet.2018.06.017 es_ES
dc.description.references Schlaegel, B. (1984). Green ash volume and weight tables. US Department of Agriculture, Forest Service, Southern Forest Experiment Station. es_ES
dc.description.references Sheridan, R. D., Popescu, S. C., Gatziolis, D., Morgan, C. L. S., & Ku, N. W. (2015). Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest. Remote Sensing, 7, 229–255. https://doi.org/10.3390/rs70100229 es_ES
dc.description.references Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from Internet photo collections. International Journal of Computer Vision, 80(2), 189–210. https://doi.org/10.1007/s11263-007-0107-3 es_ES
dc.description.references Stereńczak, K., Kraszewski, B., Mielcarek, M., Piasecka, N., Lisiewicz, M., & Heurich, M. (2020). Mapping individual trees with airborne laser scanning data in an European lowland forest using a selfcalibration algorithm. International Journal of Applied Earth Observation and Geoinformation, 93, 102191. https://doi.org/10.1016/j.jag.2020.102191 es_ES
dc.description.references Tagarakis, A. C., Koundouras, S., Fountas, S., & Gemtos, T. (2018). Evaluation of the use of LIDAR laser scanner to map pruning wood in vineyards and its potential for management zones delineation. Precision Agriculture, 19, 334–347. https://doi.org/10.1007/s11119-017-9519-4 es_ES
dc.description.references Torres-Sánchez, J., de Castro, A., Peña, J. M., Jiménez-Brenes, F. M., Arquero, O., Lovera, M., et al. (2018). Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosystems Engineering, 176, 172–184. https://doi.org/10.1016/j.biosystemseng.2018.10.018 es_ES
dc.description.references Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE, 10(6), e0130479. https://doi.org/10.1371/journal.pone.0130479 es_ES
dc.description.references Valbuena, M. A., Santamaría, J., & Sanz, F. (2016). Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the national forest inventory data. Forest Systems, 25(1), e046. https://doi.org/10.5424/fs/2016251-05790 es_ES
dc.description.references Van der Zande, V., Hoet, W., Jonckheere, I., van Aardt, J., & Coppin, P. (2006). Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agricultural and Forest Meteorology, 141(2–4), 147–160. https://doi.org/10.1016/j.agrformet.2006.09.007 es_ES
dc.description.references Velázquez-Martí, B., Fernández-González, E., López-Cortes, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(2), 3208–3217. https://doi.org/10.1016/j.biombioe.2011.04.042 es_ES
dc.description.references Velázquez-Martí, B., López-Cortés, I., & Salazar, D. M. (2014). Dendrometric analysis of olive trees for wood biomass quantification in Mediterranean orchards. Agroforestry Systems, 88(5), 755–765. https://doi.org/10.1007/s10457-014-9718-1 es_ES
dc.description.references Walklate, P. J., Cross, J. V., Richardson, G. M., Murray, R. A., & Baker, D. E. (2002). Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosystems Engineering, 82(3), 253–267. es_ES
dc.description.references Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopenka, P. (2016). Assessment of forest structure using two UAV Techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7, 62. https://doi.org/10.3390/f7030062 es_ES
dc.description.references Wang, X., Cheng, X., Gong, P., Huang, H., Li, Z., & Li, X. (2011). Earth science applications of ICESat/GLAS: A review. International Journal of Remote Sensing, 32(23), 8837–8864. es_ES
dc.description.references Wieser, M., Mandlburger, G., Hollaus, M., Otepka, J., Glira, P., & Pfeifer, N. (2017). A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sensing, 9, 1154. https://doi.org/10.3390/rs9111154 es_ES
dc.description.references Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., Peng, D., Hall, C. C., Brown, L., Shi, Y., et al. (2019). Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 187–195. https://doi.org/10.1016/j.jag.2019.04.019 es_ES
dc.description.references Xing, D., Bergeron, J. C., Solarik, K. A., Tomm, B., Macdonald, S. E., Spence, J. R., & He, F. (2019). Challenges in estimating forest biomass: Use of allometric equations for three boreal tree species. Canadian Journal of Forest Research, 49(12), 1613–1622. es_ES
dc.description.references Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 255, 89–99. es_ES
dc.description.references Zhang, Z., Cao, L., & She, G. (2017). Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in subtropical forests. Remote Sens, 9, 940. https://doi.org/10.3390/rs9090940 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem