Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | Morales-García, Juan![]() |
es_ES |
dc.contributor.author | Bueno-Crespo, Andrés![]() |
es_ES |
dc.contributor.author | Martínez-España, Raquel![]() |
es_ES |
dc.contributor.author | Posadas-Yagüe, Juan-Luis![]() |
es_ES |
dc.contributor.author | Manzoni, Pietro![]() |
es_ES |
dc.contributor.author | Cecilia-Canales, José María![]() |
es_ES |
dc.date.accessioned | 2023-12-18T19:05:22Z | |
dc.date.available | 2023-12-18T19:05:22Z | |
dc.date.issued | 2023-02 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200863 | |
dc.description.abstract | [EN] The combination of Artificial Intelligence and the Internet of Things (AIoT) is enabling the next economic revolution in which data and immediacy are at the key players. Agriculture is one of the sectors that can benefit most from the use of AIoT to optimise resources and reduce its environmental footprint. However, this convergence requires computational resources that enable the execution of AI workloads, and in the context of agriculture, ensuring autonomous operation and low energy consumption. In this work, we evaluate TinyML and edge computing platforms to predict the indoor temperature of an operational greenhouse in situ. In particular, the computational/energy trade-off of these platforms is assessed to analyse whether their use in this context is feasible. Two artificial neural networks are adapted to these platforms to predict the indoor temperature of the greenhouse. Our results show that the microcontroller-based devices can offer a competitive and energy-efficient computational alternative to more traditional edge computing approaches for lightweight ML workloads. | es_ES |
dc.description.sponsorship | This work is derived from R & D projects RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, "FSE invest in your future" and "ERDF A way of making Europe". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Artificial Intelligence | es_ES |
dc.subject | Edge computing | es_ES |
dc.subject | Time series forecast | es_ES |
dc.subject | TinyML | es_ES |
dc.subject | CPU-GPU Performance | es_ES |
dc.subject | Power consumption | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Evaluation of low-power devices for smart greenhouse development | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-023-05076-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RTC-2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RYC-2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Morales-García, J.; Bueno-Crespo, A.; Martínez-España, R.; Posadas-Yagüe, J.; Manzoni, P.; Cecilia-Canales, JM. (2023). Evaluation of low-power devices for smart greenhouse development. The Journal of Supercomputing. 79:10277-10299. https://doi.org/10.1007/s11227-023-05076-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-023-05076-8 | es_ES |
dc.description.upvformatpinicio | 10277 | es_ES |
dc.description.upvformatpfin | 10299 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 79 | es_ES |
dc.relation.pasarela | S\500876 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Feki MA, Kawsar F, Boussard M, Trappeniers L (2013) The internet of things: the next technological revolution. Computer 46(2):24–25 | es_ES |
dc.description.references | Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660 | es_ES |
dc.description.references | Tahsien SM, Karimipour H, Spachos P (2020) Machine learning based solutions for security of internet of things (iot): a survey. J Netw Comput Appl 161:102630 | es_ES |
dc.description.references | Papadokostaki K, Mastorakis G, Panagiotakis S, Mavromoustakis CX, Dobre, C, Batalla JM (2017) Handling big data in the era of internet of things (IoT). Springer | es_ES |
dc.description.references | Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39 | es_ES |
dc.description.references | Capra M, Peloso R, Masera G, Ruo Roch M, Martina M (2019) Edge computing: a survey on the hardware requirements in the internet of things world. Future Internet 11(4):100 | es_ES |
dc.description.references | Warden P, Situnayake D (2019) TinyML. O’Reilly Media, Incorporated | es_ES |
dc.description.references | Portilla J, Mujica G, Lee J-S, Riesgo T (2019) The extreme edge at the bottom of the internet of things: a review. IEEE Sens J 19(9):3179–3190 | es_ES |
dc.description.references | Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387 | es_ES |
dc.description.references | Guillén-Navarro M, Martínez-España R, Bueno-Crespo A, Ayuso B, Moreno JL, Cecilia JM (2019) An LSTM deep learning scheme for prediction of low temperatures in agriculture. IOS Press, Amsterdam, pp 130–138 | es_ES |
dc.description.references | Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge | es_ES |
dc.description.references | Abhishek K, Singh M, Ghosh S, Anand A (2012) Weather forecasting model using artificial neural network. Procedia Technol 4:311–318 | es_ES |
dc.description.references | Lee S, Lee Y-S, Son Y (2020) Forecasting daily temperatures with different time interval data using deep neural networks. Appl Sci 10:1609 | es_ES |
dc.description.references | Zhang Z, Dong Y (2020) Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity | es_ES |
dc.description.references | Jung D-H, Kim HS, Jhin C, Kim H-J, Park SH (2020) Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Comput Electron Agric 173:105402 | es_ES |
dc.description.references | Codeluppi G, Cilfone A, Davoli L, Ferrari G Ai at the edge: a smart gateway for greenhouse air temperature forecasting. In: 2020 IEEE international workshop on metrology for agriculture and forestry (MetroAgriFor), pp 348–353. IEEE | es_ES |
dc.description.references | Guillén MA, Llanes A, Imbernón B, Martínez-España R, Bueno-Crespo A, Cano J-C, Cecilia JM (2021) Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J Supercomput 77(1):818–840 | es_ES |
dc.description.references | Codeluppi G, Davoli L, Ferrari G (2021) Forecasting air temperature on edge devices with embedded AI. Sensors 21(12):3973 | es_ES |
dc.description.references | Chang Z, Liu S, Xiong X, Cai Z, Tu G (2021) A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things J | es_ES |
dc.description.references | Dubey AK, Kumar A, García-Díaz V, Sharma AK, Kanhaiya K (2021) Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain Energy Technol Assess 47:101474 | es_ES |
dc.description.references | Seshadri K, Akin B, Laudon J, Narayanaswami R, Yazdanbakhsh A (2021) An evaluation of edge tpu accelerators for convolutional neural networks. arXiv preprint arXiv:2102.10423 | es_ES |
dc.description.references | Rashid N, Demirel BU, Al Faruque MA (2022) Ahar: Adaptive cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things J | es_ES |
dc.description.references | Cruz M, Mafra S, Teixeira E, Figueiredo F (2022) Smart strawberry farming using edge computing and IOT. Sensors 22(15):5866 | es_ES |
dc.description.references | Feng B, Ding Z, Jiang C (2022) Fast: A forecasting model with adaptive sliding window and time locality integration for dynamic cloud workloads. IEEE Trans Serv Comput | es_ES |
dc.description.references | Ding Z, Feng B, Jiang C (2022) Coin: a container workload prediction model focusing on common and individual changes in workloads. IEEE Trans Parallel Distrib Syst 33(12):4738–4751 | es_ES |
dc.description.references | Alongi F, Ghielmetti N, Pau D, Terraneo F, Fornaciari W (2020) Tiny neural networks for environmental predictions: an integrated approach with miosix. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp 350–355. IEEE | es_ES |
dc.description.references | Pettit A (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135 | es_ES |
dc.description.references | Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press, Oxford | es_ES |
dc.description.references | Tadeusiewicz R (1995) Neural networks: a comprehensive foundation: by Simon HAYKIN; Macmillan College Publishing, New York, USA; IEEE Press, New York, USA; IEEE Computer Society Press, Los Alamitos, CA, USA; 1994; 696 pp 69–95; ISBN: 0-02-352761-7. Pergamon | es_ES |
dc.description.references | Li Y, Hao Z, Lei H (2016) Survey of convolutional neural network. J Comput Appl 36(9):2508 | es_ES |
dc.description.references | Sahu M, Dash R (2021) A survey on deep learning: convolution neural network (CNN). Springer, Berlin | es_ES |
dc.description.references | Tensorflow: Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/microcontrollers. Accessed 2021-07-06 | es_ES |
dc.description.references | Inc MT: PAC1934 USB C POWERMETER. https://www.microchip.com/en-us/development-tool/ADM00921 | es_ES |