Mostrar el registro sencillo del ítem
dc.contributor.author | García-Garví, Antonio | es_ES |
dc.contributor.author | Layana-Castro, Pablo Emmanuel | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2023-12-19T19:01:53Z | |
dc.date.available | 2023-12-19T19:01:53Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200925 | |
dc.description.abstract | [EN] In recent decades, assays with the nematode Caenorhabditis elegans (C. elegans) have enabled great advances to be made in research on aging. However, performing these assays manually is a laborious task. To solve this problem, numerous C. elegans assay automation techniques are being developed to increase throughput and accuracy. In this paper, a method for predicting the lifespan of C. elegans nematodes using a bimodal neural network is proposed and analyzed. Specifically, the model uses the sequence of images and the count of live C. elegans up to the current day to predict the lifespan curve termination. This network has been trained using a simulator to avoid the labeling costs of training such a model. In addition, a method for estimating the uncertainty of the model predictions has been proposed. Using this uncertainty, a criterion has been analyzed to decide at what point the assay could be halted and the user could rely on the model¿s predictions. The method has been analyzed and validated using real experiments. The results show that uncertainty is reduced from the mean lifespan and that most of the predictions obtained do not present statistically significant differences with respect to the curves obtained manually. | es_ES |
dc.description.sponsorship | This study was supported by the Plan Nacional de I+D with Project RTI2018-094312-B-I00, European FEDER funds and by Ministerio de Universidades (Spain) under Grant FPU20/02639 and Grant PRE2019-088214. Funding for open access charge: Universitat Politecnica de Valencia. ADM Nutrition, Biopolis SL, and Archer Daniels Midland provided support in the supply of C. elegans. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Chalmers University of Technology | es_ES |
dc.relation.ispartof | Computational and Structural Biotechnology Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | C. elegans | es_ES |
dc.subject | Lifespan prediction | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Synthetic data | es_ES |
dc.subject | Multimodal neural network | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.csbj.2022.12.033 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2019-088214//Ayudas para contratos predoctorales para la formación de doctores, convocatoria 2019/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | García-Garví, A.; Layana-Castro, PE.; Sánchez Salmerón, AJ. (2023). Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation. Computational and Structural Biotechnology Journal. 21:655-664. https://doi.org/10.1016/j.csbj.2022.12.033 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.csbj.2022.12.033 | es_ES |
dc.description.upvformatpinicio | 655 | es_ES |
dc.description.upvformatpfin | 664 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.identifier.eissn | 2001-0370 | es_ES |
dc.identifier.pmid | 36659931 | es_ES |
dc.identifier.pmcid | PMC9826930 | es_ES |
dc.relation.pasarela | S\486149 | es_ES |
dc.contributor.funder | Archer Daniels Midland | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | MINISTERIO DE UNIVERSIDADES E INVESTIGACION | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |