- -

Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Garví, Antonio es_ES
dc.contributor.author Layana-Castro, Pablo Emmanuel es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2023-12-19T19:01:53Z
dc.date.available 2023-12-19T19:01:53Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200925
dc.description.abstract [EN] In recent decades, assays with the nematode Caenorhabditis elegans (C. elegans) have enabled great advances to be made in research on aging. However, performing these assays manually is a laborious task. To solve this problem, numerous C. elegans assay automation techniques are being developed to increase throughput and accuracy. In this paper, a method for predicting the lifespan of C. elegans nematodes using a bimodal neural network is proposed and analyzed. Specifically, the model uses the sequence of images and the count of live C. elegans up to the current day to predict the lifespan curve termination. This network has been trained using a simulator to avoid the labeling costs of training such a model. In addition, a method for estimating the uncertainty of the model predictions has been proposed. Using this uncertainty, a criterion has been analyzed to decide at what point the assay could be halted and the user could rely on the model¿s predictions. The method has been analyzed and validated using real experiments. The results show that uncertainty is reduced from the mean lifespan and that most of the predictions obtained do not present statistically significant differences with respect to the curves obtained manually. es_ES
dc.description.sponsorship This study was supported by the Plan Nacional de I+D with Project RTI2018-094312-B-I00, European FEDER funds and by Ministerio de Universidades (Spain) under Grant FPU20/02639 and Grant PRE2019-088214. Funding for open access charge: Universitat Politecnica de Valencia. ADM Nutrition, Biopolis SL, and Archer Daniels Midland provided support in the supply of C. elegans. es_ES
dc.language Inglés es_ES
dc.publisher Chalmers University of Technology es_ES
dc.relation.ispartof Computational and Structural Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject C. elegans es_ES
dc.subject Lifespan prediction es_ES
dc.subject Deep learning es_ES
dc.subject Synthetic data es_ES
dc.subject Multimodal neural network es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.csbj.2022.12.033 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2019-088214//Ayudas para contratos predoctorales para la formación de doctores, convocatoria 2019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation García-Garví, A.; Layana-Castro, PE.; Sánchez Salmerón, AJ. (2023). Analysis of a C. elegans lifespan prediction method based on a bimodal neural network and uncertainty estimation. Computational and Structural Biotechnology Journal. 21:655-664. https://doi.org/10.1016/j.csbj.2022.12.033 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.csbj.2022.12.033 es_ES
dc.description.upvformatpinicio 655 es_ES
dc.description.upvformatpfin 664 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.identifier.eissn 2001-0370 es_ES
dc.identifier.pmid 36659931 es_ES
dc.identifier.pmcid PMC9826930 es_ES
dc.relation.pasarela S\486149 es_ES
dc.contributor.funder Archer Daniels Midland es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem