- -

Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Garví, Antonio es_ES
dc.contributor.author Layana-Castro, Pablo Emmanuel es_ES
dc.contributor.author Puchalt-Rodríguez, Joan Carles es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2023-12-19T19:01:59Z
dc.date.available 2023-12-19T19:01:59Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200928
dc.description.abstract [EN] Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains. es_ES
dc.description.sponsorship This study was supported by the Plan Nacional de I+D with Project RTI2018-094312-B-I00, European FEDER funds and by Ministerio de Universidades (Spain) under grant FPU20/02639. ADM Nutrition, Biopolis SL, and Archer Daniels Midland provided support in the supply of C. elegans. Funding for open access charge: Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Chalmers University of Technology es_ES
dc.relation.ispartof Computational and Structural Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject C. elegans es_ES
dc.subject Lifespan automation es_ES
dc.subject Deep learning es_ES
dc.subject Training strategy es_ES
dc.subject Synthetic data es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.csbj.2023.10.007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation García-Garví, A.; Layana-Castro, PE.; Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ. (2023). Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy. Computational and Structural Biotechnology Journal. 21:5049-5065. https://doi.org/10.1016/j.csbj.2023.10.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.csbj.2023.10.007 es_ES
dc.description.upvformatpinicio 5049 es_ES
dc.description.upvformatpfin 5065 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.identifier.eissn 2001-0370 es_ES
dc.identifier.pmid 37867965 es_ES
dc.identifier.pmcid PMC10589381 es_ES
dc.relation.pasarela S\501397 es_ES
dc.contributor.funder Archer Daniels Midland es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem