Mostrar el registro sencillo del ítem
dc.contributor.author | García-Garví, Antonio | es_ES |
dc.contributor.author | Layana-Castro, Pablo Emmanuel | es_ES |
dc.contributor.author | Puchalt-Rodríguez, Joan Carles | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2023-12-19T19:01:59Z | |
dc.date.available | 2023-12-19T19:01:59Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200928 | |
dc.description.abstract | [EN] Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains. | es_ES |
dc.description.sponsorship | This study was supported by the Plan Nacional de I+D with Project RTI2018-094312-B-I00, European FEDER funds and by Ministerio de Universidades (Spain) under grant FPU20/02639. ADM Nutrition, Biopolis SL, and Archer Daniels Midland provided support in the supply of C. elegans. Funding for open access charge: Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Chalmers University of Technology | es_ES |
dc.relation.ispartof | Computational and Structural Biotechnology Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | C. elegans | es_ES |
dc.subject | Lifespan automation | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Training strategy | es_ES |
dc.subject | Synthetic data | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.csbj.2023.10.007 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | García-Garví, A.; Layana-Castro, PE.; Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ. (2023). Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy. Computational and Structural Biotechnology Journal. 21:5049-5065. https://doi.org/10.1016/j.csbj.2023.10.007 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.csbj.2023.10.007 | es_ES |
dc.description.upvformatpinicio | 5049 | es_ES |
dc.description.upvformatpfin | 5065 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.identifier.eissn | 2001-0370 | es_ES |
dc.identifier.pmid | 37867965 | es_ES |
dc.identifier.pmcid | PMC10589381 | es_ES |
dc.relation.pasarela | S\501397 | es_ES |
dc.contributor.funder | Archer Daniels Midland | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | MINISTERIO DE UNIVERSIDADES E INVESTIGACION | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |