Mostrar el registro sencillo del ítem
dc.contributor.author | Quina-García, Imanol | es_ES |
dc.contributor.author | Almar-Liante, Laura | es_ES |
dc.contributor.author | Catalán-Martínez, David | es_ES |
dc.contributor.author | Dayaghi, Amir Masoud | es_ES |
dc.contributor.author | MARTINEZ FELIU, AGUSTIN | es_ES |
dc.contributor.author | Norby, Truls | es_ES |
dc.contributor.author | Escolástico Rozalén, Sonia | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2023-12-20T19:01:12Z | |
dc.date.available | 2023-12-20T19:01:12Z | |
dc.date.issued | 2023-10-19 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200989 | |
dc.description.abstract | [EN] Power-to-methane technology enables storage of renewable elec-tricity in chemical energy, which can be transported and converted us-ing existing infrastructure. The moderate energy efficiency of this pro-cess is associated with high reactor exothermicity and complex thermal integration. Proton-ceramic electrochemical cells (PCECs) enable ther-mal combination of methanation and electrochemically driven H2 steps via endothermic reactions, boosting energy efficiency and heat man-agement. Here, we report single-step methane production from CO2 in a tubular PCEC at 450 degrees C and less than 30 bar. The H2 reactant is sup-plied by electrochemical pumping of protons from H2 in the external chamber. The electrochemical cell consists of an -25-mm-thick electro-lyte (BaZr0.8Ce0.1Y0.1O3-8) supported on a BaZr0.8Ce0.1Y0.1O3-8/Ni com-posite acting as a methanation catalyst. The reaction was studied as a function of total pressure, H2/CO2 ratio, and current density, reaching CH4 yields greater than 99% above 20 bar. High pressure and a CO2- rich atmosphere ameliorated the electrochemical behavior because of higher electrolyte hydration and boosted electrode kinetics. | es_ES |
dc.description.sponsorship | This study has received European Union Horizon 2020 Research and Innovation funding under grant agreement 838077 (eCOCO2 project) and financial support from the Spanish Government (PID2022-139663OB-I00, PRE2019-090959, and CEX2021-001230-S funded by MCIN/AEI/10.13039/501100011033) and MCIN with funding from NextGenerationEU (PRTR-C17.I1) within the Planes Complementarios con CCAA (Area of Green Hydrogen and Energy) and was carried out in the CSIC Interdisciplinary Thematic Platform (PTI+) Transicion Energetica Sostenible+ (PTI-TRANSENER+). Support from Camilla Vigen (CoorsTek Membrane Sciences) with manufacture of tubular cells is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Cell Press | es_ES |
dc.relation.ispartof | Chem Catalysis (Online) | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.title | Direct electrocatalytic CO2 reduction in a pressurized tubular protonic membrane reactor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.checat.2023.100766 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/838077/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRE2019-090959/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2022-139663OB-I00/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CEX2021-001230-S/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/H2020 Societal Challenges//EU192356_01//Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Quina-García, I.; Almar-Liante, L.; Catalán-Martínez, D.; Dayaghi, AM.; Martinez Feliu, A.; Norby, T.; Escolástico Rozalén, S.... (2023). Direct electrocatalytic CO2 reduction in a pressurized tubular protonic membrane reactor. Chem Catalysis (Online). 3(10):1-17. https://doi.org/10.1016/j.checat.2023.100766 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.checat.2023.100766 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2667-1093 | es_ES |
dc.relation.pasarela | S\505563 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | H2020 Societal Challenges | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |