- -

Attentional Extractive Summarization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Attentional Extractive Summarization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Barba, José Ángel es_ES
dc.contributor.author Segarra Soriano, Encarnación es_ES
dc.contributor.author García-Granada, Fernando es_ES
dc.contributor.author Sanchís Arnal, Emilio es_ES
dc.contributor.author Hurtado Oliver, Lluis Felip es_ES
dc.date.accessioned 2023-12-20T19:01:24Z
dc.date.available 2023-12-20T19:01:24Z
dc.date.issued 2023-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200992
dc.description.abstract [EN] In this work, a general theoretical framework for extractive summarization is proposed¿the Attentional Extractive Summarization framework. Although abstractive approaches are generally used in text summarization today, extractive methods can be especially suitable for some applications, and they can help with other tasks such as Text Classification, Question Answering, and Information Extraction. The proposed approach is based on the interpretation of the attention mechanisms of hierarchical neural networks, which compute document-level representations of documents and summaries from sentence-level representations, which, in turn, are computed from word-level representations. The models proposed under this framework are able to automatically learn relationships among document and summary sentences, without requiring Oracle systems to compute the reference labels for each sentence before the training phase. These relationships are obtained as a result of a binary classification process, the goal of which is to distinguish correct summaries for documents. Two different systems, formalized under the proposed framework, were evaluated on the CNN/DailyMail and the NewsRoom corpora, which are some of the reference corpora in the most relevant works on text summarization. The results obtained during the evaluation support the adequacy of our proposal and suggest that there is still room for the improvement of our attentional framework. es_ES
dc.description.sponsorship This work is partially supported by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU/PRTR" under grants PDC2021-120846-C44 (AMIC-PoC-UPV) and PID2021-126061OB-C41 (BEWORD-UPV). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Siamese neural networks es_ES
dc.subject Hierarchical neural networks es_ES
dc.subject Attention mechanisms es_ES
dc.subject Extractive summarization es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Attentional Extractive Summarization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app13031458 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-126061OB-C41//DESCUBRIENDO EL SIGNIFICADO Y LA INTENCIÓN MÁS ALLÁ DE LA PALABRA HABLADA: HACIA UN ENTORNO INTELIGENTE PARA ABORDAR LOS DOCUMENTOS MULTIMEDIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//AYUDA PAID-11-21//BEWORD: Descubriendo el significado y la intención más allá de la palabra hablada: hacia un entorno inteligente para abordar los documentos multimedia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PDC2021-120846-C44/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation González-Barba, JÁ.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E.; Hurtado Oliver, LF. (2023). Attentional Extractive Summarization. Applied Sciences. 13(3):1-22. https://doi.org/10.3390/app13031458 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app13031458 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\481721 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem