- -

CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wongpalee, Somsakul Pop es_ES
dc.contributor.author Liu, Shiheng es_ES
dc.contributor.author Gallego Bartolomé, Javier es_ES
dc.contributor.author Leitner, Alexander es_ES
dc.contributor.author Aebersold, Ruedi es_ES
dc.contributor.author Liu, Wanlu es_ES
dc.contributor.author Yen, Linda es_ES
dc.contributor.author Nohales, Maria A. es_ES
dc.contributor.author Kuo, Peggy Hsuanyu es_ES
dc.contributor.author Vashisht, Ajay A. es_ES
dc.contributor.author Wohlschlegel, James A. es_ES
dc.contributor.author Feng, Suhua es_ES
dc.contributor.author Kay, Steve A. es_ES
dc.contributor.author Zhou, Z. Hong es_ES
dc.contributor.author Jacobsen, Steven E. es_ES
dc.date.accessioned 2023-12-21T19:02:29Z
dc.date.available 2023-12-21T19:02:29Z
dc.date.issued 2019-09-02 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201054
dc.description.abstract [EN] Transcription by RNA polymerase V (Pol V) in plants is required for RNA-directed DNA methylation, leading to transcriptional gene silencing. Global chromatin association of Pol V requires components of the DDR complex DRD1, DMS3 and RDM1, but the assembly process of this complex and the underlying mechanism for Pol V recruitment remain unknown. Here we show that all DDR complex components co-localize with Pol V, and we report the cryoEM structures of two complexes associated with Pol V recruitment-DR (DMS3-RDM1) and DDR' (DMS3-RDM1-DRD1 peptide), at 3.6 angstrom and 3.5 angstrom resolution, respectively. RDM1 dimerization at the center frames the assembly of the entire complex and mediates interactions between DMS3 and DRD1 with a stoichiometry of 1 DRD1:4 DMS3:2 RDM1. DRD1 binding to the DR complex induces a drastic movement of a DMS3 coiled-coil helix bundle. We hypothesize that both complexes are functional intermediates that mediate Pol V recruitment. es_ES
dc.description.sponsorship This research was supported by in part by grants from the National Institutes of Health (1R35GM130272 to S.E.J. and R01GM071940/AI094386/DE025567/DE028583 to Z.H.Z.), a Bill and Melinda Gates Foundation grant (OPP1125410) to S.E.J., and the European Research Council (ERC AdG 679821 to R.A.). We acknowledge the cryoEM resource in the Electron Imaging Center for Nanomachines supported by UCLA and grants from NIH (S10RR23057, S10OD018111, and U24GM116792) and NSF (DMR-1548924 and DBI-1338135). We thank Xiaojun Wang, Douglas Black, and Michael Carey for providing bacterial expression plasmids, useful guidance in recombinant protein expression and allowing us to use laboratory equipment. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-019-11759-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//DMR-1548924/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//DBI-1338135/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ERC//679821/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U24GM116792/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//1R35GM130272/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01GM071940%2FAI094386%2FDE025567%2FDE028583/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//S10RR23057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//S10OD018111/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMGF//OPP1125410/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Wongpalee, SP.; Liu, S.; Gallego Bartolomé, J.; Leitner, A.; Aebersold, R.; Liu, W.; Yen, L.... (2019). CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. Nature Communications. 10:1-12. https://doi.org/10.1038/s41467-019-11759-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-019-11759-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.pmid 31477705 es_ES
dc.identifier.pmcid PMC6718625 es_ES
dc.relation.pasarela S\505606 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Bill and Melinda Gates Foundation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010). es_ES
dc.description.references Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014). es_ES
dc.description.references Zhou, M. & Law, J. A. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II’s rules. Curr. Opin. Plant Biol. 27, 154–164 (2015). es_ES
dc.description.references Matzke, M. A., Kanno, T. & Matzke, A. J. M. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev. Plant Biol. 66, 243–267 (2015). es_ES
dc.description.references Zhong, X. et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 19, 870–875 (2012). es_ES
dc.description.references Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004). es_ES
dc.description.references Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat. Genet. 40, 670–675 (2008). es_ES
dc.description.references Allard, S. T. M. et al. Structure at 1.6 Å resolution of the protein from gene locus At3g22680 from Arabidopsis thaliana. Acta Crystallogr Sect. F. Struct. Biol. Cryst. Commun. 61, 647–650 (2005). es_ES
dc.description.references Johnson, L. M. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014). es_ES
dc.description.references Sasaki, T., Lorković, Z. J., Liang, S.-C., Matzke, A. J. M. & Matzke, M. The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation. PLoS ONE 9, e88190 (2014). es_ES
dc.description.references Law, J. A. et al. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in Arabidopsis. Curr. Biol. 20, 951–956 (2010). es_ES
dc.description.references Liu, Z.-W. et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet. 10, e1003948 (2014). es_ES
dc.description.references Gallego-Bartolomé, J. et al. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176, 1068–1082.e19 (2019). es_ES
dc.description.references Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7, 311–322 (2006). es_ES
dc.description.references Haering, C. H., Löwe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002). es_ES
dc.description.references Li, Y., Schoeffler, A. J., Berger, J. M. & Oakley, M. G. The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB. J. Mol. Biol. 395, 11–19 (2010). es_ES
dc.description.references Ku, B., Lim, J.-H., Shin, H.-C., Shin, S.-Y. & Oh, B.-H. Crystal structure of the MukB hinge domain with coiled-coil stretches and its functional implications. Proteins 78, 1483–1490 (2010). es_ES
dc.description.references Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016). es_ES
dc.description.references Soh, Y.-M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303 (2015). es_ES
dc.description.references Diebold-Durand, M.-L. et al. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67, 334–347 (2017). es_ES
dc.description.references Lahmy, S. et al. Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev. 30, 2565–2570 (2016). es_ES
dc.description.references Dürr, H., Flaus, A., Owen-Hughes, T. & Hopfner, K.-P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 34, 4160–4167 (2006). es_ES
dc.description.references Sprouse, R. O., Brenowitz, M. & Auble, D. T. Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO J. 25, 1492–1504 (2006). es_ES
dc.description.references Ryan, D. P. & Owen-Hughes, T. Snf2-family proteins: chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 15, 649–656 (2011). es_ES
dc.description.references Wang, Z. et al. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557, 516–521 (2018). es_ES
dc.description.references Gao, Z. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465, 106–109 (2010). es_ES
dc.description.references Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R. & Jacobsen, S. E. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 4, e1000280 (2008). es_ES
dc.description.references Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinforma. 10, 232 (2009). es_ES
dc.description.references Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008). es_ES
dc.description.references Catoni, M., Tsang, J. M., Greco, A. P. & Zabet, N. R. DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 46, e114 (2018). es_ES
dc.description.references Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). es_ES
dc.description.references Heinzelman, P., Powers, D. N., Wohlschlegel, J. A. & John, V. Shotgun proteomic profiling of bloodborne nanoscale extracellular vesicles. Methods Mol. Biol. 1897, 403–416 (2019). es_ES
dc.description.references Kelstrup, C. D., Young, C., Lavallee, R., Nielsen, M. L. & Olsen, J. V. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J. Proteome Res. 11, 3487–3497 (2012). es_ES
dc.description.references Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteom. 129, 16–24 (2015). es_ES
dc.description.references Tabb, D. L., McDonald, W. H. & Yates, J. R. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002). es_ES
dc.description.references Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). es_ES
dc.description.references Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). es_ES
dc.description.references Liu, W. et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nat. Plants 4, 181–188 (2018). es_ES
dc.description.references Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). es_ES
dc.description.references Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 15, 284 (2014). es_ES
dc.description.references Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014). es_ES
dc.description.references Carragher, B. et al. Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132, 33–45 (2000). es_ES
dc.description.references Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). es_ES
dc.description.references Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). es_ES
dc.description.references Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). es_ES
dc.description.references Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012). es_ES
dc.description.references Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013). es_ES
dc.description.references Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003). es_ES
dc.description.references Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). es_ES
dc.description.references Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004). es_ES
dc.description.references Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010). es_ES
dc.description.references Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). es_ES
dc.description.references Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010). es_ES
dc.description.references Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). es_ES
dc.description.references Leitner, A. et al. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc. Natl Acad. Sci. USA 111, 9455–9460 (2014). es_ES
dc.description.references Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat. Protoc. 9, 120–137 (2014). es_ES
dc.description.references Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008). es_ES
dc.description.references Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019). es_ES
dc.description.references Florens, L. et al. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40, 303–311 (2006). es_ES
dc.description.references Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem