Mostrar el registro sencillo del ítem
dc.contributor.author | Ahuir-Esteve, Vicent | es_ES |
dc.contributor.author | Segarra Soriano, Encarnación | es_ES |
dc.contributor.author | Hurtado Oliver, Lluis Felip | es_ES |
dc.date.accessioned | 2023-12-22T07:14:25Z | |
dc.date.available | 2023-12-22T07:14:25Z | |
dc.date.issued | 2023-07-13 | es_ES |
dc.identifier.isbn | 978-1-959429-85-2 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201066 | |
dc.description | Resuelta son urgencia por sexenio | es_ES |
dc.description.abstract | [EN] This paper presents our system at the Radiology Report Summarization Shared Task-1B of the 22nd BioNLP Workshop 2023. Inspired by the work of the BioBART model, we continuously pre-trained a general domain BART model with biomedical data to adapt it to this specific domain. In the pre-training phase, several pre-training tasks are aggregated to inject linguistic knowledge and increase the abstractivity of the generated summaries. We present the results of our models, and also, we have carried out an additional study on the lengths of the generated summaries, which has provided us with interesting information. | es_ES |
dc.description.sponsorship | This work is partially supported by MCIN/AEI/10.13039/501100011033, by the "European Union and 'NextGenerationEU/MRR', and by 'ERDF A way of making Europe' under grants PDC2021-120846-C44 and PID2021-126061OB-C41. It is also partially supported by the Generalitat Valenciana under project CIPROM/2021/023, and by the Spanish Ministerio de Universidades under the grant FPU21/05288 for university teacher training. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computational Linguistics | es_ES |
dc.relation.ispartof | Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | ELiRF-VRAIN at BioNLP Task 1B: Radiology Report Summarization | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.18653/v1/2023.bionlp-1.52 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PDC2021-120846-C44//DESARROLLO DE UN PROTOTIPO PREOMPETITIVO PARA EL ANÁLISIS AFECTIVO DE INFORMACIÓN MULTIMEDIA- UPV/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-126061OB-C41//DESCUBRIENDO EL SIGNIFICADO Y LA INTENCIÓN MÁS ALLÁ DE LA PALABRA HABLADA: HACIA UN ENTORNO INTELIGENTE PARA ABORDAR LOS DOCUMENTOS MULTIMEDIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///CIPROM%2F2021%2F023//Combining Explainable Artificial Intelligence and Conceptual Modelling for Data Intensive Domains Management/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIU//FPU21%2F05288/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ahuir-Esteve, V.; Segarra Soriano, E.; Hurtado Oliver, LF. (2023). ELiRF-VRAIN at BioNLP Task 1B: Radiology Report Summarization. Association for Computational Linguistics. 524-529. https://doi.org/10.18653/v1/2023.bionlp-1.52 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 22nd Workshop on Biomedical Natural Language Processing (BioNLP 2023) | es_ES |
dc.relation.conferencedate | Julio 13-13,2023 | es_ES |
dc.relation.conferenceplace | Toronto, Canada | es_ES |
dc.relation.publisherversion | https://doi.org/10.18653/v1/2023.bionlp-1.52 | es_ES |
dc.description.upvformatpinicio | 524 | es_ES |
dc.description.upvformatpfin | 529 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\502464 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |