- -

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and distribution planning in the supply chain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and distribution planning in the supply chain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guzmán-Ortiz, Brunnel Eduardo es_ES
dc.contributor.author Poler, R. es_ES
dc.contributor.author Andres, B. es_ES
dc.date.accessioned 2023-12-22T19:02:10Z
dc.date.available 2023-12-22T19:02:10Z
dc.date.issued 2023-03 es_ES
dc.identifier.issn 1854-6250 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201088
dc.description.abstract [EN] A number of research studies has addressed supply chain planning from various perspectives (strategical, tactical, operational) and demonstrated the advantages of integrating both production and distribution planning (PDP). The globalisation of supply chains and the fourth industrial revolution (Industry 4.0) mean that companies must be more agile and resilient to adapt to volatile demand, and to improve their relation with customers and suppliers. Hence the growing interest in coordinating production-distribution processes in supply chains. To deal with the new market¿s requirements and to adapt business processes to industry¿s regulations and changing conditions, more efforts should be made towards new methods that optimise PDP processes. This paper proposes a matheuristic approach for solving the PDP problem. Given the complexity of this problem, combining a genetic algorithm and a mixed integer linear programming model is proposed. The matheuristic algorithm was tested using the Coin-OR Branch & Cut open-source solver. The computational outcomes revealed that the presented matheuristic algorithm may be used to solve real sized problems. es_ES
dc.description.sponsorship This work was supported by the Conselleria de Educación, Investigación, Cultura y Deporte - Generalitat Valenciana for hiring predoctoral research staff with Grant (ACIF/2018/170) and European Social Fund with Grant Operational Program of FSE 2014-2020, the Valencian Community. The research leading to these results received funding from the European Union H2020 Programme with grant agreement No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing" (i4Q) and the Regional Department of Innovation, Universities, Science and Digital Society of the Generalitat Valenciana entitled "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PROMETEO/ 2021/065) es_ES
dc.language Inglés es_ES
dc.publisher University of Maribor es_ES
dc.relation.ispartof Advances in Production Engineering & Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Production and distribution planning es_ES
dc.subject Supply chain es_ES
dc.subject Matheuristic es_ES
dc.subject Genetic algorithm es_ES
dc.subject Mixed integer linear programming model es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and distribution planning in the supply chain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.14743/apem2023.1.454 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/958205/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F170//AYUDA PREDOCTORAL GVA-GUZMAN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F065//Industrial Production and Logistics Optimization in Industry 4.0 (i4OPT) / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Guzmán-Ortiz, BE.; Poler, R.; Andres, B. (2023). A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and distribution planning in the supply chain. Advances in Production Engineering & Management. 18(1):19-31. https://doi.org/10.14743/apem2023.1.454 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.14743/apem2023.1.454 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\494119 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem