Mostrar el registro sencillo del ítem
dc.contributor.author | Ausin, Israel | es_ES |
dc.contributor.author | Feng, Suhua | es_ES |
dc.contributor.author | Yu, Chaowei | es_ES |
dc.contributor.author | Liu, Wanlu | es_ES |
dc.contributor.author | Kuo, Hsuan Yu | es_ES |
dc.contributor.author | Jacobsen, Elise L. | es_ES |
dc.contributor.author | Zhai, Jixian | es_ES |
dc.contributor.author | Gallego Bartolomé, Javier | es_ES |
dc.contributor.author | Wang, Lin | es_ES |
dc.contributor.author | Egertsdotter, Ulrika | es_ES |
dc.contributor.author | Street, Nathaniel R. | es_ES |
dc.contributor.author | Jacobsen, Steven E. | es_ES |
dc.contributor.author | Wang, Haifeng | es_ES |
dc.date.accessioned | 2023-12-22T19:02:27Z | |
dc.date.available | 2023-12-22T19:02:27Z | |
dc.date.issued | 2016-12-13 | es_ES |
dc.identifier.issn | 0027-8424 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201095 | |
dc.description.abstract | [EN] DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. | es_ES |
dc.description.sponsorship | We thank members of the S.E.J. laboratory for useful discussions. We are grateful for support from the Umea Plant Science Centre (UPSC) bioinformatics platform. This work was supported by funds from National Natural Science Foundation of China Grant 31501031, Program for Excellent Youth Talents in Fujian Province University, and Fujian-Taiwan Joint Innovative Centre for Germplasm Resources and Cultivation of Crop (Fujian 2011 Program) (to H.W.), the University of California, Los Angeles-Fujian Agriculture and Forestry University Joint Research Center on Plant Proteomics, the Alice Wallenberg Foundation, the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (Vinnova), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas), and the Swedish Foundation for Strategic Research, in part through the UPSC Berzelii Centre for Forest Biotechnology. W.L. is supported by a Philip J. Whitcome fellowship from the Molecular Biology Institute of University of California, Los Angeles and a scholarship from the Chinese Scholarship Council. J.Z. is a Life Science Research Foundation Postdoctoral Fellow, sponsored by the Gordon and Betty Moore Foundation. N.R.S. is supported by the Trees and Crops for the Future project. S.E.J. is an Investigator of the Howard Hughes Medical Institute. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Proceedings of the National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | GymnospermsNorway spruce | es_ES |
dc.subject | DNA methylation | es_ES |
dc.subject | Small RNA | es_ES |
dc.subject | Genome size | es_ES |
dc.title | DNA methylome of the 20-gigabase Norway spruce genome. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.1618019113 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//31501031/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Ausin, I.; Feng, S.; Yu, C.; Liu, W.; Kuo, HY.; Jacobsen, EL.; Zhai, J.... (2016). DNA methylome of the 20-gigabase Norway spruce genome. Proceedings of the National Academy of Sciences. 113(50):E8106-E8113. https://doi.org/10.1073/pnas.1618019113 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1073/pnas.1618019113 | es_ES |
dc.description.upvformatpinicio | E8106 | es_ES |
dc.description.upvformatpfin | E8113 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.description.issue | 50 | es_ES |
dc.identifier.pmid | 27911846 | es_ES |
dc.identifier.pmcid | PMC5167160 | es_ES |
dc.relation.pasarela | S\505592 | es_ES |
dc.contributor.funder | University of California | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Trees and Crops for the Future | es_ES |
dc.contributor.funder | Swedish Research Council Formas | es_ES |
dc.contributor.funder | Gordon and Betty Moore Foundation | es_ES |
dc.contributor.funder | Umea Plant Science Centre, Suecia | es_ES |
dc.contributor.funder | National Science Foundation, China | es_ES |
dc.contributor.funder | Knut and Alice Wallenberg Foundation | es_ES |
dc.contributor.funder | Natural Science Foundation of Fujian Province | es_ES |
dc.contributor.funder | Swedish Governmental Agency for Innovation Systems | es_ES |
dc.contributor.funder | Swedish Foundation for Humanities and Social Sciences | es_ES |
dc.description.references | EJ Finnegan, WJ Peacock, ES Dennis, DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10, 217–223 (2000). | es_ES |
dc.description.references | SJ Cokus, , Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008). | es_ES |
dc.description.references | S Feng, , Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107, 8689–8694 (2010). | es_ES |
dc.description.references | R Lister, , Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008). | es_ES |
dc.description.references | MA Matzke, RA Mosher, RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat Rev Genet 15, 394–408 (2014). | es_ES |
dc.description.references | QX Song, , Genome-wide analysis of DNA methylation in soybean. Mol Plant 6, 1961–1974 (2013). | es_ES |
dc.description.references | S Zhong, , Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31, 154–159 (2013). | es_ES |
dc.description.references | A Zemach, , Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107, 18729–18734 (2010). | es_ES |
dc.description.references | H Wang, , CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc Natl Acad Sci USA 112, 13729–13734 (2015). | es_ES |
dc.description.references | M Regulski, , The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23, 1651–1662 (2013). | es_ES |
dc.description.references | CE Niederhuth, , Widespread natural variation of DNA methylation within angiosperms. Genome Biol 17, 194 (2016). | es_ES |
dc.description.references | S Takuno, J-H Ran, BS Gaut, Evolutionary patterns of genic DNA methylation vary across land plants. Nat Plants 2, 15222 (2016). | es_ES |
dc.description.references | EK Lee, , A functional phylogenomic view of the seed plants. PLoS Genet 7, e1002411 (2011). | es_ES |
dc.description.references | Y Huang, , Ancient origin and recent innovations of RNA Polymerase IV and V. Mol Biol Evol 32, 1788–1799 (2015). | es_ES |
dc.description.references | MA Matzke, T Kanno, AJ Matzke, RNA-directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66, 243–267 (2015). | es_ES |
dc.description.references | L Ma, , Angiosperms are unique among land plant lineages in the occurrence of key genes in the RNA-directed DNA Methylation (RdDM) pathway. Genome Biol Evol 7, 2648–2662 (2015). | es_ES |
dc.description.references | IA Yakovlev, E Carneros, Y Lee, JE Olsen, CG Fossdal, Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249 (2016). | es_ES |
dc.description.references | F Krueger, SR Andrews, Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011). | es_ES |
dc.description.references | X Li, , Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13, 300 (2012). | es_ES |
dc.description.references | H Stroud, , Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2, e00354 (2013). | es_ES |
dc.description.references | SC Stelpflug, SR Eichten, PJ Hermanson, NM Springer, SM Kaeppler, Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198, 209–218 (2014). | es_ES |
dc.description.references | DK Seymour, D Koenig, J Hagmann, C Becker, D Weigel, Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet 10, e1004785 (2014). | es_ES |
dc.description.references | B Nystedt, , The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013). | es_ES |
dc.description.references | C Vitte, MA Fustier, K Alix, MI Tenaillon, The bright side of transposons in crop evolution. Brief Funct Genomics 13, 276–295 (2014). | es_ES |
dc.description.references | M Lechner, , The correlation of genome size and DNA methylation rate in metazoans. Theory Biosci 132, 47–60 (2013). | es_ES |
dc.description.references | S Jansson, G Meyer-Gauen, R Cerff, W Martin, Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39, 34–46 (1994). | es_ES |
dc.description.references | I Birol, , Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29, 1492–1497 (2013). | es_ES |
dc.description.references | DB Neale, , Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15, R59 (2014). | es_ES |
dc.description.references | D Uddenberg, S Akhter, P Ramachandran, JF Sundström, A Carlsbecker, Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. Front Plant Sci 6, 970 (2015). | es_ES |
dc.description.references | T Ujino-Ihara, , Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59, 895–907 (2005). | es_ES |
dc.description.references | XQ Wang, JH Ran, Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 75, 24–40 (2014). | es_ES |
dc.description.references | A Zemach, IE McDaniel, P Silva, D Zilberman, Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010). | es_ES |
dc.description.references | I Hakman, LC Fowke, S Von Arnold, T Eriksson, The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38, 53–59 (1985). | es_ES |
dc.description.references | SVA Inger Hakman, Plantlet regeneration through somatic embryogenesis in Picea abies (Norway Spruce). J Plant Physiol 121, 149–158 (1985). | es_ES |
dc.description.references | Ø Johnsen, CG Fossdal, N Nagy, J Mølmann, OG Dæhlen, T Skrøppa, Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28, 1090–1102 (2005). | es_ES |
dc.description.references | M Ong-Abdullah, , Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015). | es_ES |
dc.description.references | E Businge, K Brackmann, T Moritz, U Egertsdotter, Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32, 232–244 (2012). | es_ES |
dc.description.references | J Du, , Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 55, 495–504 (2014). | es_ES |
dc.description.references | X Cao, SE Jacobsen, Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99, 16491–16498 (2002). | es_ES |
dc.description.references | H Stroud, MV Greenberg, S Feng, YV Bernatavichute, SE Jacobsen, Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). | es_ES |
dc.description.references | C Trapnell, L Pachter, SL Salzberg, TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). | es_ES |
dc.description.references | C Trapnell, , Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578 (2012). | es_ES |
dc.description.references | M Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics in Action 17, 10–12 (2012). | es_ES |
dc.description.references | B Langmead, C Trapnell, M Pop, SL Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009). | es_ES |