- -

Analysis of local head losses in microirrigation lateral connectors based on machine learning approaches

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Analysis of local head losses in microirrigation lateral connectors based on machine learning approaches

Show full item record

Martí Pérez, PC.; Shiri, J.; Roman Alorda, A.; Turegano Pastor, JV.; Royuela, A. (2023). Analysis of local head losses in microirrigation lateral connectors based on machine learning approaches. Irrigation Science. 41(6):783-801. https://doi.org/10.1007/s00271-023-00852-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201173

Files in this item

Item Metadata

Title: Analysis of local head losses in microirrigation lateral connectors based on machine learning approaches
Author: Martí Pérez, Pau Carles Shiri, Jalal Roman Alorda, Armando Turegano Pastor, José Vicente Royuela, Alvaro
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] The presence of emitters along the lateral, as well as of connectors along the manifold, causes additional local head losses other than friction losses. An accurate estimation of local losses is of crucial importance ...[+]
Subjects: Artificial neural-networks , Drip irrigation laterals , Reference evapotranspiration , Noncoaxial emitters , System uniformity , Wetting patterns , Pressure losses , In-line , Simulation , Water
Copyrigths: Reconocimiento (by)
Source:
Irrigation Science. (issn: 0342-7188 )
DOI: 10.1007/s00271-023-00852-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00271-023-00852-z
Thanks:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
Type: Artículo

References

Al-Amoud AI (1995) Significance of energy losses due to emitter connections in trickle irrigation lines. J Agric Eng Res 60(1):1–5. https://doi.org/10.1006/jaer.1995.1090

Al-Ghobari HM, El-Marazky MS, Dewidar AZ, Mattar MA (2018) Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques. Agric Water Manag 195:211–221. https://doi.org/10.1016/j.agwat.2017.10.005

ASAE EP 405.1 1988 (R2019). Design and Installation of Microirrigation Systems. American Society of Agricultural Engineers. USA [+]
Al-Amoud AI (1995) Significance of energy losses due to emitter connections in trickle irrigation lines. J Agric Eng Res 60(1):1–5. https://doi.org/10.1006/jaer.1995.1090

Al-Ghobari HM, El-Marazky MS, Dewidar AZ, Mattar MA (2018) Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques. Agric Water Manag 195:211–221. https://doi.org/10.1016/j.agwat.2017.10.005

ASAE EP 405.1 1988 (R2019). Design and Installation of Microirrigation Systems. American Society of Agricultural Engineers. USA

Ayars JE, Bucks DA, Lamm FR, Nakayama FS (2007) Introduction. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production: design, operation, and management. Elsevier, Amsterdam, pp 1–26

Bagarello V, Ferro V, Provenzano G, Pumo D (1997) Evaluating pressure losses in drip-irrigation lines. J Irrig Drain Eng 123(1):1–7. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:1(1)

Baiamonte G (2018) Advances in designing drip irrigation laterals. Agric Water Manag 199:157–174. https://doi.org/10.1016/j.agwat.2017.12.015

Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, UK

Bombardelli WWA, de Camargo AP, Frizzone JA, Lavanholi R, Rocha HS (2019) Local head loss caused in connections used in micro-irrigation systems. Rev Bras Eng Agric Ambient 23(7):492–498. https://doi.org/10.1590/1807-1929/agriambi.v23n7p492-498

Bombardelli WWA, de Camargo AP, Rodrigues LHA, Frizzone JA (2021) Evaluation of minor losses in connectors used in microirrigation subunits using machine learning techniques. J Irrig Drain Eng 147(8):04021032. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001591

Demir V, Yurdem H, Degirmencioglu A (2007) Development of prediction models for friction losses in drip irrigation laterals equipped with integrated in-line and on-line emitters using dimensional analysis. Biosyst Eng 96(1):617–631. https://doi.org/10.1016/j.biosystemseng.2007.01.002

Elnesr M, Alazba A (2017) Simulation of water distribution under surface dripper using artificial neural networks. Comput Electron Agric 143(12):90–99. https://doi.org/10.1016/j.compag.2017.10.003

Ferreira C (2001a) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129. https://doi.org/10.48550/arXiv.cs/0102027

Ferreira C (2001b) Gene expression programming in problem solving. 6th online world conference on soft computing in industrial applications. Springer, Berlin

Gomes AWA, Frizzone JA, Rettore Neto O, Miranda JH (2010) Local head losses for integrated drippers in polyethylene pipes. Eng Agrícola 30(3):435–446. https://doi.org/10.1590/S0100-69162010000300008

Guan H, Li J, Li Y (2013a) Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions. Agric Water Manag 124:37–51. https://doi.org/10.1016/j.agwat.2013.03.020

Guan H, Li J, Li Y (2013b) Effects of drip system uniformity and irrigation amount on water and salt distributions in soil under arid conditions. J Integr Agric 12(5):924–939. https://doi.org/10.1016/S2095-3119(13)60310-X

Gyasi-Agyei Y (2007) Field-scale assessment of uncertainties in drip irrigation lateral parameters. J Irrig Drain Eng 133(6):512–520. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(512)

Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston, MA

Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall International Inc., New Jersey

Hinnell A, Lazarovitch N, Furman A, Poulton M, Warrick A (2010) Neuro-drip: estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrig Sci 28(6):535–544. https://doi.org/10.1007/s00271-010-0214-8

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8

Juana L, Rodriguez-Sinobas L, Losada A (2002a) Determining minor head losses in drip irrigation laterals. I: methodology. J Irrig Drain Eng 128(6):376–384. https://doi.org/10.1061/(ASCE)0733-9437(2002a)128:6(376)

Juana L, Rodriguez-Sinobas L, Losada A (2002b) Determining minor head losses in drip irrigation laterals. II: experimental study and validation. J Irrig Drain Eng 128(6):385–396. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:6(385)

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence. Morgan Kaufmann, San Mateo, CA. 2(12) p.1137–1143.

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Bradford Book, Cambridge, MA

Lavanholi R, Pires de Camargo A, Bombardelli WWA, Frizzone JA, Ait-Mouheb N, Alberto da Silva E, Correia de Oliveira F (2020) Prediction of pressure–discharge curves of trapezoidal labyrinth channels from nonlinear regression and artificial neural networks. J Irrig Drain Eng 146(8):04020018. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001485

Martí P, Provenzano G, Royuela A, Palau-Salvador G (2010) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000125

Martí P, Gasque M, González-Altozano P (2013a) An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Comput Electron Agric 91(2):75–86. https://doi.org/10.1016/j.compag.2012.12.001

Martí P, Shiri J, Duran-Ros M, Arbat G, Ramírez de Cartagena F, Puig-Bargués J (2013b) Artificial neural networks vs. gene expression programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Comput Electron Agric 99(11):176–185. https://doi.org/10.1016/j.compag.2013.08.016

Martí P, González-Altozano P, López-Urrea R, Mancha L, Shiri J (2015) Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric Water Manag 149(2):81–90. https://doi.org/10.1016/j.agwat.2014.10.028

Mattar MA (2018) Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agric Water Manag 198:28–38. https://doi.org/10.1016/j.agwat.2017.12.017

Mattar MA, Alamoud AI (2015) Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters. Comput Electron Agric 114(6):189–201. https://doi.org/10.1016/j.compag.2015.04.007

Mattar MA, Alazba AA, Zin El-Abedin TK (2015) Forecasting furrow irrigation infiltration using artificial neural networks. Agric Water Manag 148(1):63–71. https://doi.org/10.1016/j.agwat.2014.09.015

Mattar MA, Alamoud AI, Al-Othman AA, Elansary HO, Farah AHH (2020) Hydraulic performance of labyrinth-channel emitters: experimental study, ANN, and GEP modeling. Irrig Sci 38:1–16. https://doi.org/10.1007/s00271-019-00647-1

Nunes Flores JH, Coll Faria L, Rettore Neto O, Diotto AV, Colombo A (2021) Methodology for determining the emitter local head loss in drip irrigation systems. J Irrig Drain Eng 147(1):060220014. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001516

Palau-Salvador G, Sanchis LH, Gonzalez-Altozano P, Arviza J (2006) Real local losses estimation for on-line emitters using empirical a numerical procedures. J Irrig Drain Eng 132(6):522–530. https://doi.org/10.1061/(ASCE)0733-437(2006)132:6(522)

Perboni A, Frizzone JA, de Camargo AP (2014) Artificial neural network-based equation to estimate head loss along drip irrigation laterals. Revista Brasileira De Agricultura Irrigada 8(2):77–85. https://doi.org/10.7127/rbai.v8n200224

Perboni A, Frizzone JA, De Camargo AP, Pinto MF (2015) Modelling head loss along emitting pipes using dimensional analysis. Eng Agrícola 35(5):442–457. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n3p442-457/2015

Provenzano G, Pumo D (2004) Experimental analysis of local pressure losses for microirrigation laterals. J Irrig Drain Eng 130(4):318–324. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:4(318)

Provenzano G, Pumo D, Di Pio P (2005) Simplified procedure to evaluate head losses in drip irrigation laterals. J Irrig Drain Eng 131(6):525–532. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:6(525)

Provenzano G, Di Dio P, Palau-Salvador G (2007) New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals. J Irrig Drain Eng 133(6):520–527. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(520)

Provenzano G, Di Dio P, Leone R (2014) Assessing a local losses evaluation procedure for low-pressure lay-flat drip laterals. J Irrig Drain Eng 140(6):04014017. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000731

Provenzano G, Alagna V, Autovino D, Manzano Juárez J, Rallo G (2016) Analysis of geometrical relationships and friction losses in small-diameter lay-flat polyethylene pipes. J Irrig Drain Eng 142(2):04015041. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000958

Rettore Neto O, de Miranda JH, Frizzone JA, Workman SR (2009) Local head loss of non-coaxial emitters inserted in polyethylene pipe. Trans 52(3):729. https://doi.org/10.13031/2013.27394

Rodriguez-Sinobas L, Juana L, Sánchez-Calvo R, Losada A (2004) Pérdidas de carga localizadas en inserciones de ramales de goteo. Ingeniería Del Agua 11(3):289–296

Royuela A, Martí P, Manzano J (2010) Pérdidas de carga singulares en la entrada de los laterales de riego localizado conectados mediante collarín de toma. XVIII Congreso Nacional de Riegos, pp 147–148. Spain

Samadianfard S, Sadraddini AA, Nazemi AH, Provenzano G, Kişi Ö (2014) Estimating soil wetting patterns for drip irrigation using genetic programming. Span J Agric Res 10(4):1155–1166. https://doi.org/10.5424/sjar/2012104-502-11

Sayyadi H, Sadraddini AA, Zadeh DF, Montero J (2012) Artificial neural networks for simulating wind effects on sprinkler distribution patterns. Span J Agric Res 10(4):1143–1154. https://doi.org/10.5424/sjar/2012104-445-11

Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494. https://doi.org/10.1016/j.jspi.2003.10.004

Shiri J, Kisi O, Landeras G, Lopez JJ, Nazemi AH, Stuyt LCPM (2012) Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414–415:302–316. https://doi.org/10.1016/j.jhydrol.2011.11.004

Shiri J, Martí P, Singh VP (2014) Evaluation of gene expression programming approaches for estimating daily pan evaporation through spatial and temporal data scanning. Hydrol Process 28(3):1215–1225. https://doi.org/10.1002/hyp.9669

Sobenko LR, Bombardelli WWA, Pires de Camargo A, Frizzone JA, Duarte SN (2020) Minor losses through start connectors in microirrigation laterals: dimensional analysis and artificial neural networks approaches. J Irrig Drain Eng 146(5):04020005. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001466

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B 36:111–147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Vilaça FN, De Camargo AP, Frizzone JA, Mateos L, Koech R (2017) Minor losses in start connectors of microirrigation laterals. Irrig Sci 35(4):227–240. https://doi.org/10.1007/s00271-017-0534-z

Wang J, Chen R (2020) An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig Sci 38:147–162. https://doi.org/10.1007/s00271-019-00656-0

Wang Z, Li J, Li Y (2014) Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the north China plain. Agric Water Manag 142:19–28. https://doi.org/10.1016/j.agwat.2014.04.013

Wang Y, Zhu DL, Zhang L, Zhu S (2018) Simulation of local head loss in trickle lateral lines equipped with in-line emitters based on dimensional analysis. Irrig and Drain 67(4):572–581. https://doi.org/10.1002/ird.2273

Wang J, Yang T, Wei T, Chen R, Yuan S (2020) Experimental determination of local head loss of non-coaxial emitters in thin-wall lay-flat polyethylene pipes. Biosyst Eng 190(2):71–86. https://doi.org/10.1016/j.biosystemseng.2019.11.021

Yassin MA, Alazba AA, Mattar MA (2016a) A new predictive model for furrow irrigation infiltration using gene expression programming. Comput Electron Agric 122:168–175. https://doi.org/10.1016/j.compag.2016.01.035

Yassin MA, Alazba AA, Mattar MA (2016b) Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agric Water Manag 163(1):110–124. https://doi.org/10.1016/j.agwat.2015.09.009

Yildirim G (2007) An assessment of hydraulic design of trickle laterals considering effect of minor losses. Irrig Drain 56(4):399–421. https://doi.org/10.1002/ird.303

Yildirim G (2010) Total energy loss assessment for trickle lateral lines equipped with integrated in-line and on-line emitters. Irrig Sci 28(5):341–352. https://doi.org/10.1007/s00271-009-0197-5

Zitterell DB, Frizzone JA, Rettore Neto O (2014) Dimensional analysis approach to estimate local head losses in microirrigation connectors. Irrig Sci 32(4):169–179. https://doi.org/10.1007/s00271-013-0424-y

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record