- -

Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carricondo-Antón, Juan Manuel es_ES
dc.contributor.author Jiménez Bello, Miguel Angel es_ES
dc.contributor.author Manzano Juarez, Juan es_ES
dc.contributor.author Royuela, Alvaro es_ES
dc.contributor.author González-Altozano, Pablo es_ES
dc.date.accessioned 2023-12-27T19:01:48Z
dc.date.available 2023-12-27T19:01:48Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 0342-7188 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201178
dc.description.abstract [EN] With proper management, the modernization of irrigation systems makes it possible to improve the efficiency of application and use of water at the cost of an increase in pumping needs and, therefore, an increment of the energy consumed. The recent drastic price increase for energy put the viability of many farms at risk. In this context, using photovoltaic solar energy to power pumping stations has become an increasingly attractive alternative and a cheap and reliable option. The dimensioning of pumping systems powered by photovoltaic solar energy must be done considering the variability of solar radiation to take advantage of the available photovoltaic energy, especially during periods of less irradiation. By investigating a particular case, this paper studies the effect of increasing the number of pumps in parallel while maintaining the total power, as well as the relationship between the installed photovoltaic capacity and the power of the pumping system, to meet pumping requirements throughout the year. The pumped volume increased as the number of pumps installed in parallel increased for the same photovoltaic power generator. Although this increment has a limit, beyond which no greater significant rise in volume is achieved, installation costs increase. In addition, for the same pumping power installed, the required photovoltaic generator power decreases as the number of pumps in parallel increases. In the case studied, a 27% increase in the annual pumped volume was achieved by incrementing the number of pumps in parallel from one to five, thus leading to a 44.1% reduction in the size of the photovoltaic generator and a 13.3% reduction in the cost of installation compared with a system with only one pump. The procedure used to determine the most appropriate number of pumps to install in parallel when pumping water between two tanks, which minimizes the photovoltaic generator's size while guaranteeing pumping requirements, is easily generalizable for sizing isolated photovoltaic water pumping systems. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study has received funding for the WATER¿ 4CAST project (PROMETEO/2021/074), funded by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital of the Comu¿ nitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Irrigation Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PV pumping es_ES
dc.subject Number of pumps es_ES
dc.subject Pumps in parallel es_ES
dc.subject Photovoltaic pumping optimization es_ES
dc.subject Renewable energy es_ES
dc.subject Energy cost reduction es_ES
dc.subject Irrigation systems es_ES
dc.subject Energy es_ES
dc.subject Methodology es_ES
dc.subject Management es_ES
dc.subject Networks es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00271-023-00859-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F074//INtegrated FORecasting System for Water and the Environment (WATER4CAST)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Carricondo-Antón, JM.; Jiménez Bello, MA.; Manzano Juarez, J.; Royuela, A.; González-Altozano, P. (2023). Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association. Irrigation Science. 41(6):817-834. https://doi.org/10.1007/s00271-023-00859-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00271-023-00859-6 es_ES
dc.description.upvformatpinicio 817 es_ES
dc.description.upvformatpfin 834 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\489097 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abadia R, Rocamora C, Ruiz A, Puerto H (2008) Energy efficiency in irrigation distribution networks I: theory. Biosyst Eng 101:21–27. https://doi.org/10.1016/j.biosystemseng.2008.05.013 es_ES
dc.description.references Ahmed EEE, Demirci A (2022) Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems. Energy. https://doi.org/10.1016/j.energy.2022.124048 es_ES
dc.description.references Bakelli Y, Hadj Arab A, Azoui B (2011) Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Sol Energy 85:288–294. https://doi.org/10.1016/j.solener.2010.11.023 es_ES
dc.description.references Bhattacharjee A, Mandal DK, Saha H (2016) Design of an optimized battery energy storage enabled Solar PV Pump for rural irrigation. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). pp 1–6 es_ES
dc.description.references Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricity es_ES
dc.description.references Carrêlo I (2014) High power PV pumping systems: two case studies in Spain es_ES
dc.description.references Carrillo Cobo MT, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA (2014) New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain). Sci Total Environ 473(474):1–8. https://doi.org/10.1016/j.scitotenv.2013.11.093 es_ES
dc.description.references Castel J (2000) Water use of developing citrus canopies in Valencia. Proceeding Int Soc Citric IX Congres 223–226 es_ES
dc.description.references Chandel SS, Naik MN, Chandel R (2017) Review of performance studies of direct coupled photovoltaic water pumping systems and case study. Renew Sustain Energy Rev 76:163–175. https://doi.org/10.1016/j.rser.2017.03.019 es_ES
dc.description.references Córcoles JI, Tarjuelo JM, Carrión PA, Moreno MÁ (2015) Methodology to minimize energy costs in an on-demand irrigation network based on arranged opening of hydrants. Water Resour Manag 29:3697–3710. https://doi.org/10.1007/s11269-015-1024-9 es_ES
dc.description.references Errouha M, Combe Q, Motahhir S et al (2022) Design and processor in the loop implementation of an improved control for IM driven solar PV fed water pumping system. Sci Rep. https://doi.org/10.1038/s41598-022-08252-7 es_ES
dc.description.references García-Tejero IF, Durán Zuazo V (2018) Water Scarcity and Sustainable Agriculture in Semiarid Environment. Tools, Strategies and Challenges for Woody Crops es_ES
dc.description.references Gasque M, González-Altozano P, Gutiérrez-Colomer RP, García-Marí E (2020) Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel. Sol Energy 198:324–334. https://doi.org/10.1016/j.solener.2020.01.013 es_ES
dc.description.references Gasque M, González-Altozano P, Gutiérrez-Colomer RP, García-Marí E (2021) Comparative evaluation of two photovoltaic multi-pump parallel system configurations for optimal distribution of the generated power. Sustain Energy Technol Assessments. https://doi.org/10.1016/j.seta.2021.101634 es_ES
dc.description.references Gasque M, González-Altozano P, Gimeno-Sales FJ, Orts-Grau S, Balbastre-Peralta I, Martinez-Navarro G (2022) Segui-Chilet S (2022) Energy Efficiency Optimization in Battery-Based Photovoltaic Pumping Schemes. IEEE Access 10:54064–54078. https://doi.org/10.1109/ACCESS.2022.3175586 es_ES
dc.description.references Gevorkov L, Domínguez-García JL, Romero LT (2023) Review on Solar Photovoltaic-Powered Pumping Systems. Energies (Basel) 16 es_ES
dc.description.references Hajjaji M, Mezghani D, Cristofari C, Mami A (2022) Technical, Economic, and Intelligent Optimization for the Optimal Sizing of a Hybrid Renewable Energy System with a Multi Storage System on Remote Island in Tunisia. Electronics (Switzerland) https://doi.org/10.3390/electronics11203261 es_ES
dc.description.references Hamidat A, Benyoucef B (2009) Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy 37:1489–1501. https://doi.org/10.1016/j.enpol.2008.12.014 es_ES
dc.description.references Hamidat A, Benyoucef B, Hartani T (2003) Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew Energy 28:1081–1096. https://doi.org/10.1016/S0960-1481(02)00058-7 es_ES
dc.description.references Hilali A, Mardoude Y, Essahlaoui A et al (2022) Migration to solar water pump system: Environmental and economic benefits and their optimization using genetic algorithm Based MPPT. Energy Rep 8:10144–10153. https://doi.org/10.1016/j.egyr.2022.08.017 es_ES
dc.description.references Jiménez-Bello MA, Martínez Alzamora F, Bou Soler V, Ayala HJB (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105:429–438. https://doi.org/10.1016/j.biosystemseng.2009.12.014 es_ES
dc.description.references Jiménez Bello M, Alzamora FM, Castel JR, Intrigliolo DS (2011) Validation of a methodology for grouping intakes of pressurized irrigation networks into sectors to minimize energy consumption. Agric Water Manag 102:46–53. https://doi.org/10.1016/j.agwat.2011.10.005 es_ES
dc.description.references Jiménez-Bello MA, Martínez Alzamora F, Martínez Gimeno MA, Intrigliolo DS (2015) Comunidad De Regantes Mediante Balance De Energia Con Imágenes Landsat 8. XXXIII Congr Nac Riegos es_ES
dc.description.references Karmouni H, Chouiekh M, Motahhir S et al (2022) Optimization and implementation of a photovoltaic pumping system using the sine–cosine algorithm. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2022.105104 es_ES
dc.description.references Li G, Jin Y, Akram MW, Chen X (2017) Research and current status of the solar photovoltaic water pumping system – A review. Renew Sustain Energy Rev 79:440–458. https://doi.org/10.1016/j.rser.2017.05.055 es_ES
dc.description.references López-Luque R, Reca J, Martínez J (2015) Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl Energy 149:13–23. https://doi.org/10.1016/j.apenergy.2015.03.107 es_ES
dc.description.references Markvart T, Castaner L (2003) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier Science & Technology, Kidlington es_ES
dc.description.references Mérida García A, Fernández García I, Camacho Poyato E et al (2018) Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J Clean Prod 175:670–682. https://doi.org/10.1016/j.jclepro.2017.12.093 es_ES
dc.description.references Mérida García A, Gallagher J, McNabola A et al (2019) Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renew Energy 140:895–904. https://doi.org/10.1016/j.renene.2019.03.122 es_ES
dc.description.references Mérida García A, González Perea R, Camacho Poyato E et al (2020) Comprehensive sizing methodology of smart photovoltaic irrigation systems. Agric Water Manag 229:105888. https://doi.org/10.1016/j.agwat.2019.105888 es_ES
dc.description.references Monís JI, López-Luque R, Reca J, Martínez J (2020) Multistage bounded evolutionary algorithm to optimize the design of sustainable photovoltaic (PV) pumping irrigation systems with storage. Sustain. https://doi.org/10.3390/su12031026 es_ES
dc.description.references Mosetlhe T, Babatunde O, Yusuff A et al (2023) A MCDM approach for selection of microgrid configuration for rural water pumping system. Energy Rep 9:922–929. https://doi.org/10.1016/j.egyr.2022.11.040 es_ES
dc.description.references Okakwu IK, Alayande AS, Akinyele DO et al (2022) Effects of total system head and solar radiation on the techno-economics of PV groundwater pumping irrigation system for sustainable agricultural production. Sci Afr. https://doi.org/10.1016/j.sciaf.2022.e01118 es_ES
dc.description.references Orts-Grau S, González-Altozano P, Gimeno-Sales FJ, Balbastre-Peralta I, Martínez Márquez CI, Gasque M (2021) Photovoltaic water pumping: comparison between direct and lithium battery solutions. IEEE Access 9:101147–101163. https://doi.org/10.1109/ACCESS.2021.3097246 es_ES
dc.description.references Paredes-Sánchez JP, Villicaña-Ortíz E, Xiberta-Bernat J (2015) Solar water pumping system for water mining environmental control in a slate mine of Spain. J Clean Prod 87:501–504. https://doi.org/10.1016/j.jclepro.2014.10.047 es_ES
dc.description.references Picazo MÁP, Juárez JM, García-Márquez D (2018) Energy consumption optimization in irrigation networks supplied by a standalone direct pumping photovoltaic system. Sustain. https://doi.org/10.3390/su10114203 es_ES
dc.description.references Reges J, Braga E, Mazza L, Alexandria A (2016) Inserting photovoltaic solar energy to an automated irrigation system. Int J Comput Appl 134:1–7. https://doi.org/10.5120/ijca2016907751 es_ES
dc.description.references Rossman LA (2000) EPANET 2. User manual. U S Environ Prot Agency (EPA), U S A es_ES
dc.description.references Sánchez-Escobar F, Coq-Huelva D, Sanz-Cañada J (2018) Measurement of sustainable intensification by the integrated analysis of energy and economic flows: Case study of the olive-oil agricultural system of Estepa, Spain. J Clean Prod 201:463–470. https://doi.org/10.1016/j.jclepro.2018.07.294 es_ES
dc.description.references Santra P (2020) Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India. Agric Water Manag. https://doi.org/10.1016/j.agwat.2020.106554 es_ES
dc.description.references Senthil Kumar S, Bibin C, Akash K et al (2020) Solar powered water pumping systems for irrigation: A comprehensive review on developments and prospects towards a green energy approach. Mater Today Proc 33:303–307. https://doi.org/10.1016/j.matpr.2020.04.092 es_ES
dc.description.references Syngros G, Balaras CA, Koubogiannis DG (2017) Embodied CO2 emissions in building construction materials of hellenic dwellings. Procedia Environ Sci 38:500–508. https://doi.org/10.1016/j.proenv.2017.03.113 es_ES
dc.description.references Tiwari AK, Kalamkar VR, Pande RR et al (2020) Effect of head and PV array configurations on solar water pumping system. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.200 es_ES
dc.description.references Todde G, Murgia L, Deligios PA et al (2019) Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Sci Total Environ 651:2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175 es_ES
dc.description.references Verma S, Mishra S, Chowdhury S et al (2020) Solar PV powered water pumping system – A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.434 es_ES
dc.description.references Wazed MS, Hughes BR, O’Connor D, Kaiser Calautit J (2018) A review of sustainable solar irrigation systems for sub-Saharan Africa. Renew Sustain Energy Rev 81:1206–1225. https://doi.org/10.1016/j.rser.2017.08.039 es_ES
dc.description.references Willaarts BA, Lechón Y, Mayor B et al (2020) Cross-sectoral implications of the implementation of irrigation water use efficiency policies in Spain: a nexus footprint approach. Ecol Indic 109:105795. https://doi.org/10.1016/j.ecolind.2019.105795 es_ES
dc.description.references Yahyaoui I, Tadeo F, Segatto M (2016) Energy and water management for drip-irrigation of tomatoes in a semi-arid district. Agric Water Manag Elsevier: https://doi.org/10.1016/j.agwat.2016.08.003 es_ES
dc.description.references Zafrilla JE, Arce G, Cadarso MÁ et al (2019) Triple bottom line analysis of the Spanish solar photovoltaic sector: a footprint assessment. Renew Sustain Energy Rev 114:109311. https://doi.org/10.1016/j.rser.2019.109311 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem