- -

A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Carreres, Marcos es_ES
dc.contributor.author Moreno-Montagud, C. es_ES
dc.date.accessioned 2024-01-02T19:02:59Z
dc.date.available 2024-01-02T19:02:59Z
dc.date.issued 2023-04 es_ES
dc.identifier.issn 0301-9322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201348
dc.description.abstract [EN] Prefilming airblast atomization is becoming widely used in current aero engines. Fundamental studies on the actual annular configuration of airblast atomizers are difficult to realize. For this reason, researchers have also focused on planar configurations. In this regard, the Karlsruhe Institute of Technology (KIT) developed a test rig to conduct experimental activities, conforming a large database with results for different working fluids and operating conditions. Such data allow two-phase flow modelers to validate their calculations concerning primary atomization on these devices. The present investigation proposes a Direct Numerical Simulation (DNS) study on the KIT planar configuration through the Volume of Fluid (VOF) method within the PARIS Simulator code. The novelty compared to DNS works reported in the literature resides in the use of a boundary condition that allows accounting not only for the gas inflow turbulence but also for the spatio-temporal evolution of the liquid film thickness at the DNS inlet and its related effect on turbulence. The proposed methodology requires computing precursor single-phase and two-phase flow Large-Eddy Simulations on the prefilmer flow, with the assumption that the flow between computational domains is one-way coupled. Results are compared to DNS that only account for a constant (both timewise and spanwise) liquid film thickness at the domain inlet, validating the full methodology workflow. The proposed methodology is shown to improve the qualitative description of the atomization mechanism, as the different stages of breakup (liquid accumulation behind the prefilmer edge, bag formation, bag breakup, ligament formation and ligament breakup) coexist spanwise for a given temporal snapshot. This implies a more continuous atomization than the one predicted by the constant film thickness case, which showed the same breakup stage to be present along the prefilmer span for a given instant and led to a more discretized set of atomization events. The proposed workflow allows quantifying the influence of the liquid film flow evolution above the prefilmer surface on primary breakup frequency and relevant atomization features. es_ES
dc.description.sponsorship Research leading to these results has received funding from the Clean Sky 2 Joint Undertaking European Union's Horizon 2020 research and innovation programme through the ESTiMatE project, grant agreement 821418. The authors acknowledge PRACE for awarding access to computational resources on JOLIOT CURIE-AMD at GENCI@ CEA, France (proposal 2019204944). Computer resources at Marenostrum Supercomputer and the technical support provided by Barcelona Supercomputing Center (RES IM-2020-3-0018 and IM-2021-1-0010) in the frame of the Spanish Supercomputing Network is also thankfully acknowledged. Additionally, the support given to Mr. Carlos Moreno by Universitat Politecnica de Valencia, Spain through the "FPI Subprograma 2"grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-19)"is acknowledged. The authors must also thank Marco Crialesi and Wojciech Aniszewski for their technical advice on custom modifications on PARIS, and Johan Sundin for his implementation of the contact angle model. Help from Achille Schmitter, Hugo Martinez and Lucas Gonzalez processing the single-phase LES, two-phase LES, and DNS, respectively, is also appreciated. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Multiphase Flow es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Primary atomization es_ES
dc.subject Prefilming airblast es_ES
dc.subject Volume of fluid es_ES
dc.subject Direct numerical simulation es_ES
dc.subject Inflow boundary condition es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijmultiphaseflow.2023.104403 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/821418/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-19/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BSC//IM-2020-3-0018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BSC//IM-2021-1-0010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/PRACE//2019204944//Primary spray breakup modelling of prefilming AIRblast ATOMizers in aeronautical burners/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Payri, R.; Salvador, FJ.; Carreres, M.; Moreno-Montagud, C. (2023). A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization. International Journal of Multiphase Flow. 161:1-21. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104403 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijmultiphaseflow.2023.104403 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 161 es_ES
dc.relation.pasarela S\481877 es_ES
dc.contributor.funder CLEAN SKY JOINT UNDERTAKING es_ES
dc.contributor.funder Barcelona Supercomputing Center es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Partnership for Advanced Computing in Europe AISBL es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem