Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro, Francisco I. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Garrido-Saez, Neus | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2024-01-05T19:01:53Z | |
dc.date.available | 2024-01-05T19:01:53Z | |
dc.date.issued | 2023-05-11 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201539 | |
dc.description.abstract | [EN] In this work, we modify the iterative structure of Traub's method to include a real parameter alpha$$ \alpha $$. A parametric family of iterative methods is obtained as a generalization of Traub, which is also a member of it. The cubic order of convergence is proved for any value of alpha$$ \alpha $$. Then, a dynamical analysis is performed after applying the family for solving a system cubic polynomials by means of multidimensional real dynamics. This analysis allows to select the best members of the family in terms of stability as a preliminary study to be generalized to any nonlinear function. Finally, some iterative schemes of the family are used to check numerically the previous developments when they are used to approximate the solutions of academic nonlinear problems and a chemical diffusion reaction problem. | es_ES |
dc.description.sponsorship | ERDF A way of making Europe, Grant/Award Number: PGC2018-095896-B-C22; MICoCo of Universidad Internacional de La Rioja (UNIR), Grant/Award Number: PGC2018-095896-B-C22 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Basins of attraction | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Stability analysis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.9371 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2023). Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems. Mathematical Methods in the Applied Sciences. 1-14. https://doi.org/10.1002/mma.9371 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.9371 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\497906 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universidad Internacional de La Rioja | es_ES |
dc.contributor.funder | Universitat Politècnica de València |