- -

Automatic pollen recognition using convolutional neural networks: The case of the main pollens present in Spanish citrus and rosemary honey

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic pollen recognition using convolutional neural networks: The case of the main pollens present in Spanish citrus and rosemary honey

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valiente González, José Miguel es_ES
dc.contributor.author Juan-Borras, María del Sol es_ES
dc.contributor.author López García, Fernando es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.date.accessioned 2024-01-08T19:02:30Z
dc.date.available 2024-01-08T19:02:30Z
dc.date.issued 2023-10 es_ES
dc.identifier.issn 0889-1575 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201613
dc.description.abstract [EN] The automation of honey pollen visual sorting overcomes the limitations of the conventional procedure helping the specialist in this time-consuming task. In this work, a novel and comprehensive Ground Truth of almost 19,000 images (from optical microscopy) of the 16 most abundant types of grains/pollen particles present in citrus and rosemary honey from Spain was constructed. This task was assisted by a HoneyApp (also developed herein) for the labelling and annotation process. Subsequently, the effectiveness of different pre-existing automatic pollen recognizers based on convolutional neural networks (CNN) (VGG16, VGG19, InceptionV3, Xception, ResNet50, DenseNet201, MobileNetV2 and EfficientNetV2M) was tested together with a new network proposed in this paper (PolleNetV1). The extreme complexity of those pre-existing CNN and extensive use of millions of parameters makes this new proposal especially promising. Although with a slightly lower accuracy (average 96%) in determining the relative frequencies of different types of pollen grains/particles, it has considerable advantages such as simplicity and ability to be included in the future functionality to automate pollen recognition in honey. This is the first step to finally achieving an objective tool that allows the correct labelling of any types of pollen in honey, thus contributing to its transparency in the market. es_ES
dc.description.sponsorship This work is part of Spanish project PID2019-106800RB-I00 (2019) with financial support from the Ministerio de Ciencia e Innovacion (MCIN), Agencia Estatal de Investigacion MCIN/AEI/10.13039/501100011033/. It has been also part of the project AGROALNEXT/2022/043, funded by the Next Generation European Union and the Plan de Recuperacion, Transformacion y Resiliencia of the Spanish Government, with the support of Generalitat Valenciana. The authors would like to thank the CRUE-Universitat Politecnica deValencia for providing the funds for open access publication. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Food Composition and Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Pollen classification es_ES
dc.subject Pollen dataset es_ES
dc.subject Labelling and annotating application es_ES
dc.subject HoneyApp es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Automatic pollen recognition using convolutional neural networks: The case of the main pollens present in Spanish citrus and rosemary honey es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfca.2023.105605 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106800RB-I00/ES/ANALISIS POLINICO AUTOMATICO EMPLEANDO REDES NEURONALES CONVOLUCIONALES: APLICACION A LA CLASIFICACION MONOFLORAL DE LA MIEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//AGROALNEXT%2F2022%2F043//TECNICAS ANALÍTICAS RÁPIDAS PARA EVALUAR SEGURIDAD, ADULTERACION Y TRAZABILIDAD EN PRODUCTOS DE LA COLMENA. APLICACIÓN A UN CULTIVO EN TRANSICIÓN AGROECOLÓGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Valiente González, JM.; Juan-Borras, MDS.; López García, F.; Escriche Roberto, MI. (2023). Automatic pollen recognition using convolutional neural networks: The case of the main pollens present in Spanish citrus and rosemary honey. Journal of Food Composition and Analysis. 123:1-10. https://doi.org/10.1016/j.jfca.2023.105605 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfca.2023.105605 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 123 es_ES
dc.relation.pasarela S\505905 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem