Mostrar el registro completo del ítem
De La Barrera, U.; Arrigoni, F.; Monserrat, C.; Montoya-Castilla, I.; Gil-Gómez, J. (2024). Using Ecological Momentary Assessment and Machine Learning techniques to predict depressive symptoms in emerging adults. Psychiatry Research. 332. https://doi.org/10.1016/j.psychres.2023.115710
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201750
Título: | Using Ecological Momentary Assessment and Machine Learning techniques to predict depressive symptoms in emerging adults | |||
Autor: | De la Barrera, Usue Arrigoni, Flavia Montoya-Castilla, Inmaculada | |||
Entidad UPV: |
|
|||
Fecha difusión: |
|
|||
Resumen: |
[EN] The objective of this study was to predict the level of depressive symptoms in emerging adults by analyzing sociodemographic variables, affect, and emotion regulation strategies. Participants were 33 emerging adults ...[+]
|
|||
Palabras clave: |
|
|||
Derechos de uso: | Embargado | |||
Fuente: |
|
|||
DOI: |
|
|||
Editorial: |
|
|||
Versión del editor: | https://doi.org/10.1016/j.psychres.2023.115710 | |||
Código del Proyecto: |
|
|||
Agradecimientos: |
This research was supported by the grant PID2020-114425RB-C21
funded by MCIN/AEI /10.13039/501100011033; and with the grant
DC2021-121494-I00 funded by MCIN/AEI/10.13039/501100011033
and by European Union NextGenerationEU/PRTR.[+]
|
|||
Tipo: |
|