- -

Augmented semi-supervised learning for salient object detection with edge computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Augmented semi-supervised learning for salient object detection with edge computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yu, Chengjin es_ES
dc.contributor.author Zhang, Yanping es_ES
dc.contributor.author Mukherjee, Mithun es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-01-12T19:01:39Z
dc.date.available 2024-01-12T19:01:39Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 1536-1284 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201884
dc.description.abstract [EN] Salient object detection (SOD) from raw sensor images in the edge networks can effectively speed up the decision-making process in the complex environments, because it simulates the mechanism of human attention to identify salient objects from images. The success of supervised deep learning approaches have been widely proved SOD field. However, the imbalanced and limited training data at each edge device pose a huge challenge for us to deploy deep learning methods in the edge computing environments. In this article, we propose a cloud-edge distributed augmented semi-supervised learning architecture for SOD over the edge networks. The framework consists of two components: the base classification networks are employed in different edge nodes, and the reverse augmented network is employed in cloud. First, the base classification networks are trained with data from edge nodes while the reverse augmented network is trained with the whole data. Then, we concatenate each base classification network with reverse augmented network, thus the latter network can help the training of former network. Finally, we integrate the outputs of all base classification network to generate the pseudo-labels, which are used for semi-supervised learning of the augment network. We demonstrated a convincing performance of our semi-supervised learning framework on four bench-marked data-sets. These results show that our augmented semi-supervised learning framework can outperform other optimization strategies on deep learning for the edge computing. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Wireless Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Edge computing es_ES
dc.subject Salient object detection es_ES
dc.subject Semisupervised learning es_ES
dc.subject Semi-supervised learning es_ES
dc.subject SOD es_ES
dc.subject IOT es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Augmented semi-supervised learning for salient object detection with edge computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/MWC.2020.2000351 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Yu, C.; Zhang, Y.; Mukherjee, M.; Lloret, J. (2022). Augmented semi-supervised learning for salient object detection with edge computing. IEEE Wireless Communications. 29(3):109-114. https://doi.org/10.1109/MWC.2020.2000351 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/MWC.2020.2000351 es_ES
dc.description.upvformatpinicio 109 es_ES
dc.description.upvformatpfin 114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\506755 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem