- -

Enhanced Accuracy of Continuous Glucose Monitoring during Exercise through Physical Activity Tracking Integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced Accuracy of Continuous Glucose Monitoring during Exercise through Physical Activity Tracking Integration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laguna Sanz, Alejandro José es_ES
dc.contributor.author Diez, José-Luís es_ES
dc.contributor.author Giménez, Marga es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.date.accessioned 2024-01-12T19:02:05Z
dc.date.available 2024-01-12T19:02:05Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201894
dc.description.abstract [EN] Current Continuous Glucose Monitors (CGM) exhibit increased estimation error during periods of aerobic physical activity. The use of readily-available exercise monitoring devices opens new possibilities for accuracy enhancement during these periods. The viability of an array of physical activity signals provided by three different wearable devices was considered. Linear regression models were used in this work to evaluate the correction capabilities of each of the wearable signals and propose a model for CGM correction during exercise. A simple two-input model can reduce CGM error during physical activity (17.46% vs. 13.8%, p < 0.005) to the magnitude of the baseline error level (13.61%). The CGM error is not worsened in periods without physical activity. The signals identified as optimal inputs for the model are Mets (Metabolic Equivalent of Tasks) from the Fitbit Charge HR device, which is a normalized measurement of energy expenditure, and the skin temperature reading provided by the Microsoft Band 2 device. A simpler one-input model using only Mets is also viable for a more immediate implementation of this correction into market devices. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) (Grant Number DPI2016-78831-C2-1-R), the European Union (FEDER funds), and the Vicerectorate of Research, Innovation and Technology Transference from the Universitat Politecnica de Valencia (Grant Number PAID-06-18). We would like to acknowledge the work performed by Josep Vehí, Lyvia Biagi, Ignacio Conget and Carmen Quirós. We thank all the participants and clinical staff who participated in clinical acquisition and pre-formatting of data for study, without whom none of this work would have been possible. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Continuous glucose monitoring es_ES
dc.subject Sensor accuracy es_ES
dc.subject Exercise monitoring es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Enhanced Accuracy of Continuous Glucose Monitoring during Exercise through Physical Activity Tracking Integration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19173757 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DPI2016-78831-C2-1-R//SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PÁNCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-10-19//Mejora de prestaciones del páncreas artificial ante ingestas y ejercicio mediante observadores de perturbaciones y técnicas de compensación de retardos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Laguna Sanz, AJ.; Diez, J.; Giménez, M.; Bondía Company, J. (2019). Enhanced Accuracy of Continuous Glucose Monitoring during Exercise through Physical Activity Tracking Integration. Sensors. 19(17):1-14. https://doi.org/10.3390/s19173757 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19173757 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31480343 es_ES
dc.identifier.pmcid PMC6749476 es_ES
dc.relation.pasarela S\404273 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem