- -

Efficient Fire Segmentation for Internet-of-Things-Assisted Intelligent Transportation Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient Fire Segmentation for Internet-of-Things-Assisted Intelligent Transportation Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muhammad, Khan es_ES
dc.contributor.author Ullah, Hayat es_ES
dc.contributor.author Khan, Salman es_ES
dc.contributor.author Hijji, Mohammad es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-01-12T19:02:11Z
dc.date.available 2024-01-12T19:02:11Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 1524-9050 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201896
dc.description.abstract [EN] Rapid developments in deep learning (DL) and the Internet-of-Things (IoT) have enabled vision-based systems to efficiently detect fires at their early stage and avoid massive disasters. Implementing such IoT-driven fire detection systems can significantly reduce the corresponding ecological, social, and economic destruction; they can also provide smart monitoring for intelligent transportation systems (ITSs). However, deploying these systems requires lightweight and cost-effective convolutional neural networks (CNNs) for real-time processing on artificial intelligence (AI)-assisted edge devices. Therefore, in this paper, we propose an efficient and lightweight CNN architecture for early fire detection and segmentation, focusing on IoT-enabled ITS environments. We effectively utilize depth-wise separable convolution, point-wise group convolution, and a channel shuffling strategy with an optimal number of convolution kernels per layer, significantly reducing the model size and computation costs. Extensive experiments on our newly developed and other benchmark fire segmentation datasets reveal the effectiveness and robustness of our approach against state-of-the-art fire segmentation methods. Further, the proposed method maintains a balanced trade-off between the model efficiency and accuracy, making our system more suitable for IoT-driven fire disaster management in ITSs. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Intelligent Transportation Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computer architecture es_ES
dc.subject Image segmentation es_ES
dc.subject Convolution es_ES
dc.subject Feature extraction es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Computational modeling es_ES
dc.subject Computational complexity es_ES
dc.subject Deep learning es_ES
dc.subject Edge intelligence es_ES
dc.subject Fire segmentation es_ES
dc.subject Intelligent transportation systems es_ES
dc.subject Internet of Things (IoT) es_ES
dc.subject Semantic segmentation es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Efficient Fire Segmentation for Internet-of-Things-Assisted Intelligent Transportation Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TITS.2022.3203868 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Muhammad, K.; Ullah, H.; Khan, S.; Hijji, M.; Lloret, J. (2023). Efficient Fire Segmentation for Internet-of-Things-Assisted Intelligent Transportation Systems. IEEE Transactions on Intelligent Transportation Systems. 24(11):13141-13150. https://doi.org/10.1109/TITS.2022.3203868 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TITS.2022.3203868 es_ES
dc.description.upvformatpinicio 13141 es_ES
dc.description.upvformatpfin 13150 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\506754 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem