- -

Quantitative modelling approaches for lean manufacturing under uncertainty

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative modelling approaches for lean manufacturing under uncertainty

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rojas, Tania es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Sanchis, R. es_ES
dc.date.accessioned 2024-01-15T19:00:33Z
dc.date.available 2024-01-15T19:00:33Z
dc.date.issued 2023-12 es_ES
dc.identifier.issn 0020-7543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201925
dc.description.abstract [EN] Lean manufacturing (LM) applies different tools that help to eliminate waste as well as the opera-tions that do not add value to the product or processes to increase the value of each performedactivity. Here the main motivation is to study how quantitative modelling approaches can supportLM tools even under system and environment uncertainties. The main contributions of the articleare: (i) providing a systematic literature review of 99 works related to the modelling of uncertaintyin LM environments; (ii) proposing a methodology to classify the reviewed works; (iii) classifyingLM works under uncertainty; and (iv) identify quantitative models and their solution to deal withuncertainty in LM environments by identifying the main variables involved. Hence this article pro-vides a conceptual framework for future LM quantitative modelling under uncertainty as a guide foracademics, researchers and industrial practitioners. The main findings identify that LM under uncer-tainty has been empirically investigated mainly in the US, India and the UK in the automotive andaerospace manufacturing sectors using analytical and simulation models to minimise time and cost.Value stream mapping (VSM) and just in time (JIT) are the most used LM techniques to reduce wastein a context of system uncertainty. es_ES
dc.description.sponsorship The research leading to these results received funding fromthe project 'Industrial Production and Logistics Optimizationin Industry 4.0' (i4OPT) (Ref. PROMETEO/2021/065) granted by the Valencian Regional Government; and grant PDC2022-133957-I00 funded by MCIN/AEI /10.13039/501100011033 and by European Union Next Generation EU/PRTR. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Production Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lean manufacturing es_ES
dc.subject Production management es_ES
dc.subject Optimisation es_ES
dc.subject Modelling es_ES
dc.subject Uncertainty es_ES
dc.subject Review es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Quantitative modelling approaches for lean manufacturing under uncertainty es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207543.2023.2293138 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PDC2022-133957-I00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Rojas, T.; Mula, J.; Sanchis, R. (2023). Quantitative modelling approaches for lean manufacturing under uncertainty. International Journal of Production Research. 1-27. https://doi.org/10.1080/00207543.2023.2293138 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207543.2023.2293138 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\506995 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES
upv.costeAPC 3835,7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem