Mostrar el registro sencillo del ítem
dc.contributor.author | Rojas, Tania | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Sanchis, R. | es_ES |
dc.date.accessioned | 2024-01-15T19:00:33Z | |
dc.date.available | 2024-01-15T19:00:33Z | |
dc.date.issued | 2023-12 | es_ES |
dc.identifier.issn | 0020-7543 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201925 | |
dc.description.abstract | [EN] Lean manufacturing (LM) applies different tools that help to eliminate waste as well as the opera-tions that do not add value to the product or processes to increase the value of each performedactivity. Here the main motivation is to study how quantitative modelling approaches can supportLM tools even under system and environment uncertainties. The main contributions of the articleare: (i) providing a systematic literature review of 99 works related to the modelling of uncertaintyin LM environments; (ii) proposing a methodology to classify the reviewed works; (iii) classifyingLM works under uncertainty; and (iv) identify quantitative models and their solution to deal withuncertainty in LM environments by identifying the main variables involved. Hence this article pro-vides a conceptual framework for future LM quantitative modelling under uncertainty as a guide foracademics, researchers and industrial practitioners. The main findings identify that LM under uncer-tainty has been empirically investigated mainly in the US, India and the UK in the automotive andaerospace manufacturing sectors using analytical and simulation models to minimise time and cost.Value stream mapping (VSM) and just in time (JIT) are the most used LM techniques to reduce wastein a context of system uncertainty. | es_ES |
dc.description.sponsorship | The research leading to these results received funding fromthe project 'Industrial Production and Logistics Optimizationin Industry 4.0' (i4OPT) (Ref. PROMETEO/2021/065) granted by the Valencian Regional Government; and grant PDC2022-133957-I00 funded by MCIN/AEI /10.13039/501100011033 and by European Union Next Generation EU/PRTR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Production Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Lean manufacturing | es_ES |
dc.subject | Production management | es_ES |
dc.subject | Optimisation | es_ES |
dc.subject | Modelling | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Review | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Quantitative modelling approaches for lean manufacturing under uncertainty | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207543.2023.2293138 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PDC2022-133957-I00/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Rojas, T.; Mula, J.; Sanchis, R. (2023). Quantitative modelling approaches for lean manufacturing under uncertainty. International Journal of Production Research. 1-27. https://doi.org/10.1080/00207543.2023.2293138 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207543.2023.2293138 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 27 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\506995 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |
upv.costeAPC | 3835,7 | es_ES |