Resumen:
|
[ES] En los últimos años, la popularidad de la computación en nube ha permitido a los usuarios acceder a recursos de cómputo, red y almacenamiento sin precedentes bajo un modelo de pago por uso. Esta popularidad ha propiciado ...[+]
[ES] En los últimos años, la popularidad de la computación en nube ha permitido a los usuarios acceder a recursos de cómputo, red y almacenamiento sin precedentes bajo un modelo de pago por uso. Esta popularidad ha propiciado la aparición de nuevos servicios para resolver determinados problemas informáticos a gran escala y simplificar el desarrollo y el despliegue de aplicaciones. Entre los servicios más destacados en los últimos años se encuentran las plataformas FaaS (Función como Servicio), cuyo principal atractivo es la facilidad de despliegue de pequeños fragmentos de código en determinados lenguajes de programación para realizar tareas específicas en respuesta a eventos. Estas funciones son ejecutadas en los servidores del proveedor Cloud sin que los usuarios se preocupen de su mantenimiento ni de la gestión de su elasticidad, manteniendo siempre un modelo de pago por uso de grano fino.
Las plataformas FaaS pertenecen al paradigma informático conocido como Serverless, cuyo propósito es abstraer la gestión de servidores por parte de los usuarios, permitiéndoles centrar sus esfuerzos únicamente en el desarrollo de aplicaciones. El problema del modelo FaaS es que está enfocado principalmente en microservicios y tiende a tener limitaciones en el tiempo de ejecución y en las capacidades de computación (por ejemplo, carece de soporte para hardware de aceleración como GPUs). Sin embargo, se ha demostrado que la capacidad de autoaprovisionamiento y el alto grado de paralelismo de estos servicios pueden ser muy adecuados para una mayor variedad de aplicaciones. Además, su inherente ejecución dirigida por eventos hace que las funciones sean perfectamente adecuadas para ser definidas como pasos en flujos de trabajo de procesamiento de archivos (por ejemplo, flujos de trabajo de computación científica).
Por otra parte, el auge de los dispositivos inteligentes e integrados (IoT), las innovaciones en las redes de comunicación y la necesidad de reducir la latencia en casos de uso complejos han dado lugar al concepto de Edge computing, o computación en el borde. El Edge computing consiste en el procesamiento en dispositivos cercanos a las fuentes de datos para mejorar los tiempos de respuesta. La combinación de este paradigma con la computación en nube, formando arquitecturas con dispositivos a distintos niveles en función de su proximidad a la fuente y su capacidad de cómputo, se ha acuñado como continuo de la computación en la nube (o continuo computacional).
Esta tesis doctoral pretende, por lo tanto, aplicar diferentes estrategias Serverless para permitir el despliegue de aplicaciones generalistas, empaquetadas en contenedores de software, a través de los diferentes niveles del continuo computacional. Para ello, se han desarrollado múltiples herramientas con el fin de: i) adaptar servicios FaaS de proveedores Cloud públicos; ii) integrar diferentes componentes software para definir una plataforma Serverless en infraestructuras privadas y en el borde; iii) aprovechar dispositivos de aceleración en plataformas Serverless; y iv) facilitar el despliegue de aplicaciones y flujos de trabajo a través de interfaces de usuario. Además, se han creado y adaptado varios casos de uso para evaluar los desarrollos conseguidos.
[-]
[CA] En els últims anys, la popularitat de la computació al núvol ha permès als usuaris accedir a recursos de còmput, xarxa i emmagatzematge sense precedents sota un model de pagament per ús. Aquesta popularitat ha propiciat ...[+]
[CA] En els últims anys, la popularitat de la computació al núvol ha permès als usuaris accedir a recursos de còmput, xarxa i emmagatzematge sense precedents sota un model de pagament per ús. Aquesta popularitat ha propiciat l'aparició de nous serveis per resoldre determinats problemes informàtics a gran escala i simplificar el desenvolupament i desplegament d'aplicacions. Entre els serveis més destacats en els darrers anys hi ha les plataformes FaaS (Funcions com a Servei), el principal atractiu de les quals és la facilitat de desplegament de petits fragments de codi en determinats llenguatges de programació per realitzar tasques específiques en resposta a esdeveniments. Aquestes funcions són executades als servidors del proveïdor Cloud sense que els usuaris es preocupen del seu manteniment ni de la gestió de la seva elasticitat, mantenint sempre un model de pagament per ús de gra fi.
Les plataformes FaaS pertanyen al paradigma informàtic conegut com a Serverless, el propòsit del qual és abstraure la gestió de servidors per part dels usuaris, permetent centrar els seus esforços únicament en el desenvolupament d'aplicacions. El problema del model FaaS és que està enfocat principalment a microserveis i tendeix a tenir limitacions en el temps d'execució i en les capacitats de computació (per exemple, no té suport per a maquinari d'acceleració com GPU). Tot i això, s'ha demostrat que la capacitat d'autoaprovisionament i l'alt grau de paral·lelisme d'aquests serveis poden ser molt adequats per a més aplicacions. A més, la seva inherent execució dirigida per esdeveniments fa que les funcions siguen perfectament adequades per ser definides com a passos en fluxos de treball de processament d'arxius (per exemple, fluxos de treball de computació científica).
D'altra banda, l'auge dels dispositius intel·ligents i integrats (IoT), les innovacions a les xarxes de comunicació i la necessitat de reduir la latència en casos d'ús complexos han donat lloc al concepte d'Edge computing, o computació a la vora. L'Edge computing consisteix en el processament en dispositius propers a les fonts de dades per millorar els temps de resposta. La combinació d'aquest paradigma amb la computació en núvol, formant arquitectures amb dispositius a diferents nivells en funció de la proximitat a la font i la capacitat de còmput, s'ha encunyat com a continu de la computació al núvol (o continu computacional).
Aquesta tesi doctoral pretén, doncs, aplicar diferents estratègies Serverless per permetre el desplegament d'aplicacions generalistes, empaquetades en contenidors de programari, a través dels diferents nivells del continu computacional. Per això, s'han desenvolupat múltiples eines per tal de: i) adaptar serveis FaaS de proveïdors Cloud públics; ii) integrar diferents components de programari per definir una plataforma Serverless en infraestructures privades i a la vora; iii) aprofitar dispositius d'acceleració a plataformes Serverless; i iv) facilitar el desplegament d'aplicacions i fluxos de treball mitjançant interfícies d'usuari. A més, s'han creat i s'han adaptat diversos casos d'ús per avaluar els desenvolupaments aconseguits.
[-]
[EN] In recent years, the popularity of Cloud computing has allowed users to access unprecedented compute, network, and storage resources under a pay-per-use model. This popularity led to new services to solve specific ...[+]
[EN] In recent years, the popularity of Cloud computing has allowed users to access unprecedented compute, network, and storage resources under a pay-per-use model. This popularity led to new services to solve specific large-scale computing challenges and simplify the development and deployment of applications. Among the most prominent services in recent years are FaaS (Function as a Service) platforms, whose primary appeal is the ease of deploying small pieces of code in certain programming languages to perform specific tasks on an event-driven basis. These functions are executed on the Cloud provider's servers without users worrying about their maintenance or elasticity management, always keeping a fine-grained pay-per-use model.
FaaS platforms belong to the computing paradigm known as Serverless, which aims to abstract the management of servers from the users, allowing them to focus their efforts solely on the development of applications. The problem with FaaS is that it focuses on microservices and tends to have limitations regarding the execution time and the computing capabilities (e.g. lack of support for acceleration hardware such as GPUs). However, it has been demonstrated that the self-provisioning capability and high degree of parallelism of these services can be well suited to broader applications. In addition, their inherent event-driven triggering makes functions perfectly suitable to be defined as steps in file processing workflows (e.g. scientific computing workflows).
Furthermore, the rise of smart and embedded devices (IoT), innovations in communication networks and the need to reduce latency in challenging use cases have led to the concept of Edge computing. Edge computing consists of conducting the processing on devices close to the data sources to improve response times. The coupling of this paradigm together with Cloud computing, involving architectures with devices at different levels depending on their proximity to the source and their compute capability, has been coined as Cloud Computing Continuum (or Computing Continuum).
Therefore, this PhD thesis aims to apply different Serverless strategies to enable the deployment of generalist applications, packaged in software containers, across the different tiers of the Cloud Computing Continuum. To this end, multiple tools have been developed in order to: i) adapt FaaS services from public Cloud providers; ii) integrate different software components to define a Serverless platform on on-premises and Edge infrastructures; iii) leverage acceleration devices on Serverless platforms; and iv) facilitate the deployment of applications and workflows through user interfaces. Additionally, several use cases have been created and adapted to assess the developments achieved.
[-]
|