- -

KBG syndrome: videoconferencing and use of artificial intelligence driven facial phenotyping in 25 new patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

KBG syndrome: videoconferencing and use of artificial intelligence driven facial phenotyping in 25 new patients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guo, Lily es_ES
dc.contributor.author Park,Jiyeon es_ES
dc.contributor.author Yi, Edward es_ES
dc.contributor.author Marchi, Elaine es_ES
dc.contributor.author Hsieh, Tzung-Chien es_ES
dc.contributor.author Kibalnyk, Yana es_ES
dc.contributor.author Moreno-Sáez, Yolanda es_ES
dc.contributor.author Biskup, Saskia es_ES
dc.contributor.author Puk, Oliver es_ES
dc.contributor.author Beger, Carmela es_ES
dc.contributor.author Li, Quan es_ES
dc.contributor.author Wang, Kai es_ES
dc.contributor.author Voronova, Anastassia es_ES
dc.contributor.author Krawitz, Peter M. es_ES
dc.contributor.author Lyon, Gholson J. es_ES
dc.date.accessioned 2024-01-18T19:01:25Z
dc.date.available 2024-01-18T19:01:25Z
dc.date.issued 2022-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202025
dc.description.abstract [EN] Genetic variants in Ankyrin Repeat Domain 11 (ANKRD11) and deletions in 16q24.3 are known to cause KBG syndrome, a rare syndrome associated with craniofacial, intellectual, and neurobehavioral anomalies. We report 25 unpublished individuals from 22 families with molecularly confirmed diagnoses. Twelve individuals have de novo variants, three have inherited variants, and one is inherited from a parent with low-level mosaicism. The mode of inheritance was unknown for nine individuals. Twenty are truncating variants, and the remaining five are missense (three of which are found in one family). We present a protocol emphasizing the use of videoconference and artificial intelligence (AI) in collecting and analyzing data for this rare syndrome. A single clinician interviewed 25 individuals throughout eight countries. Participants' medical records were reviewed, and data was uploaded to the Human Disease Gene website using Human Phenotype Ontology (HPO) terms. Photos of the participants were analyzed by the GestaltMatcher and DeepGestalt, Face2Gene platform (FDNA Inc, USA) algorithms. Within our cohort, common traits included short stature, macrodontia, anteverted nares, wide nasal bridge, wide nasal base, thick eyebrows, synophrys and hypertelorism. Behavioral issues and global developmental delays were widely present. Neurologic abnormalities including seizures and/or EEG abnormalities were common (44%), suggesting that early detection and seizure prophylaxis could be an important point of intervention. Almost a quarter (24%) were diagnosed with attention deficit hyperactivity disorder and 28% were diagnosed with autism spectrum disorder. Based on the data, we provide a set of recommendations regarding diagnostic and treatment approaches for KBG syndrome. es_ES
dc.description.sponsorship This research was supported in part by funds provided to GJL from the New York State Office for People with Developmental Disabilities and NIH NIGMS R35-GM133408, and also a University of Alberta Hospital Foundation Gilbert K. Winter grant awarded to AV and Women and Children Hospital Research Institute scholarship awarded to YK. KW is supported by NIH/NLM grant LM012895. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof European Journal of Human Genetics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject KBG syndrome es_ES
dc.subject ANKRD11 es_ES
dc.subject Facial recognition es_ES
dc.title KBG syndrome: videoconferencing and use of artificial intelligence driven facial phenotyping in 25 new patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41431-022-01171-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//LM012895/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIGMS//R35-GM133408/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Guo, L.; Park, J.; Yi, E.; Marchi, E.; Hsieh, T.; Kibalnyk, Y.; Moreno-Sáez, Y.... (2022). KBG syndrome: videoconferencing and use of artificial intelligence driven facial phenotyping in 25 new patients. European Journal of Human Genetics. 30(11):1244-1254. https://doi.org/10.1038/s41431-022-01171-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41431-022-01171-1 es_ES
dc.description.upvformatpinicio 1244 es_ES
dc.description.upvformatpfin 1254 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1018-4813 es_ES
dc.identifier.pmid 35970914 es_ES
dc.identifier.pmcid PMC9626563 es_ES
dc.relation.pasarela S\471659 es_ES
dc.contributor.funder University Hospital Foundation es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Women and Children's Health Research Institute es_ES
dc.contributor.funder National Institute of General Medical Sciences, EEUU es_ES
dc.contributor.funder New York State Office for People With Developmental Disabilities es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem