Resumen:
|
[EN] Research on resource management focuses on optimizing system performance and energy efficiency by distributing shared resources like processor cores, caches, and main memory among competing applications. This research ...[+]
[EN] Research on resource management focuses on optimizing system performance and energy efficiency by distributing shared resources like processor cores, caches, and main memory among competing applications. This research spans a wide range of applications, including those from high-performance computing, machine learning, and mobile computing. Existing research frameworks often simplify research by concentrating on specific characteristics, such as the architecture of the computing nodes, resource monitoring, and representative workloads. For instance, this is typically the case with cloud systems, which introduce additional complexity regarding hardware and software requirements. To avoid this complexity during research, experimental frameworks are being developed. Nevertheless, proposed frameworks often fail regarding the types of nodes included, virtualization support, and management of critical shared resources. This paper presents Stratus, an experimental framework that overcomes these limitations. Stratus includes different types of nodes, a comprehensive virtualization stack, and the ability to partition the major shared resources of the system. Even though Stratus was originally conceived to perform cloud research, its modular design allows Stratus to be extended, broadening its research use on different computing domains and platforms, matching the complexity of modern cloud environments, as shown in the case studies presented in this paper.
[-]
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F266/ES/APLICACIÓN DE TÉCNICAS DE APRENDIZAJE PROFUNDO PARA MEJORAR LAS PRESTACIONES Y EFICIENCIA DE LA PREBÚSQUEDA DE PROCESADORES AVANZADOS/
info:eu-repo/grantAgreement/MICIU/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/FPU18%2F01948/ES/GESTION EFICIENTE DE RECURSOS COMPARTIDOS EN HIGH-PERFORMANCE COMPUTING Y CLOUD COMPUTING/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123627OB-C51/ES/MEJORA DEL PROCESADOR, SUBSISTEMA DE MEMORIA, ACELERADORES Y REDES/
info:eu-repo/grantAgreement/AEI/Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital/TED2021-130233B-C32/ES/SERVIDORES Y REDES CON ALTA EFICIENCIA ENERGETICA PARA CENTROS DE PROCESOS DE DATOS/
|
Agradecimientos:
|
This work has been supported by the Spanish Ministerio de Universidades under the grant FPU18/01948 and by the Spanish Ministerio de Ciencia e Innovación and European ERDF under grants PID2021-123627OB-C51 and TED2021-130233B-C32, ...[+]
This work has been supported by the Spanish Ministerio de Universidades under the grant FPU18/01948 and by the Spanish Ministerio de Ciencia e Innovación and European ERDF under grants PID2021-123627OB-C51 and TED2021-130233B-C32, and by Generalitat Valenciana under Grant AICO/2021/266.
[-]
|