- -

Understanding Cloud Workloads Performance in a Production like Environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Understanding Cloud Workloads Performance in a Production like Environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons-Escat, Lucía es_ES
dc.contributor.author Feliu-Pérez, Josué es_ES
dc.contributor.author Puche, José es_ES
dc.contributor.author Huang, Chaoyi es_ES
dc.contributor.author Petit Martí, Salvador Vicente es_ES
dc.contributor.author Pons Terol, Julio es_ES
dc.contributor.author Gómez Requena, María Engracia es_ES
dc.contributor.author Sahuquillo, Julio es_ES
dc.date.accessioned 2024-01-19T19:03:32Z
dc.date.available 2024-01-19T19:03:32Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 2331-8422 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202053
dc.description.abstract [EN] Understanding inter-VM interference is of paramount importance to provide a sound knowledge and understand where performance degradation comes from in the current public cloud. With this aim, this paper devises a workload taxonomy that classifies applications according to how the major system resources affect their performance (e.g., tail latency) as a function of the level of load (e.g., QPS). After that, we present three main studies addressing three major concerns to improve the cloud performance: impact of the level of load on performance, impact of hyper-threading on performance, and impact of limiting the major system resources (e.g., last level cache) on performance. In all these studies we identified important findings that we hope help cloud providers improve their system utilization. es_ES
dc.description.sponsorship This work has been supported by Huawei Cloud. es_ES
dc.language Inglés es_ES
dc.publisher Cornell University es_ES
dc.relation.ispartof ArXiv.org e-Print archive es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cloud computing es_ES
dc.subject Latency-critical workloads es_ES
dc.subject Level of load es_ES
dc.subject Tail latency es_ES
dc.subject Resource sharing es_ES
dc.subject Hyper-threading es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Understanding Cloud Workloads Performance in a Production like Environment es_ES
dc.type Preprint es_ES
dc.identifier.doi 10.48550/arXiv.2010.05031 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Pons-Escat, L.; Feliu-Pérez, J.; Puche, J.; Huang, C.; Petit Martí, SV.; Pons Terol, J.; Gómez Requena, ME.... (2020). Understanding Cloud Workloads Performance in a Production like Environment. ArXiv.org e-Print archive. 1-16. https://doi.org/10.48550/arXiv.2010.05031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.48550/arXiv.2010.05031 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\429206 es_ES
dc.contributor.funder Huawei Technologies Canada Co., Ltd. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem