Mostrar el registro sencillo del ítem
dc.contributor.author | Pons-Escat, Lucía | es_ES |
dc.contributor.author | Feliu-Pérez, Josué | es_ES |
dc.contributor.author | Puche, José | es_ES |
dc.contributor.author | Huang, Chaoyi | es_ES |
dc.contributor.author | Petit Martí, Salvador Vicente | es_ES |
dc.contributor.author | Pons Terol, Julio | es_ES |
dc.contributor.author | Gómez Requena, María Engracia | es_ES |
dc.contributor.author | Sahuquillo, Julio | es_ES |
dc.date.accessioned | 2024-01-19T19:03:32Z | |
dc.date.available | 2024-01-19T19:03:32Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 2331-8422 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202053 | |
dc.description.abstract | [EN] Understanding inter-VM interference is of paramount importance to provide a sound knowledge and understand where performance degradation comes from in the current public cloud. With this aim, this paper devises a workload taxonomy that classifies applications according to how the major system resources affect their performance (e.g., tail latency) as a function of the level of load (e.g., QPS). After that, we present three main studies addressing three major concerns to improve the cloud performance: impact of the level of load on performance, impact of hyper-threading on performance, and impact of limiting the major system resources (e.g., last level cache) on performance. In all these studies we identified important findings that we hope help cloud providers improve their system utilization. | es_ES |
dc.description.sponsorship | This work has been supported by Huawei Cloud. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Cornell University | es_ES |
dc.relation.ispartof | ArXiv.org e-Print archive | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Latency-critical workloads | es_ES |
dc.subject | Level of load | es_ES |
dc.subject | Tail latency | es_ES |
dc.subject | Resource sharing | es_ES |
dc.subject | Hyper-threading | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Understanding Cloud Workloads Performance in a Production like Environment | es_ES |
dc.type | Preprint | es_ES |
dc.identifier.doi | 10.48550/arXiv.2010.05031 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Pons-Escat, L.; Feliu-Pérez, J.; Puche, J.; Huang, C.; Petit Martí, SV.; Pons Terol, J.; Gómez Requena, ME.... (2020). Understanding Cloud Workloads Performance in a Production like Environment. ArXiv.org e-Print archive. 1-16. https://doi.org/10.48550/arXiv.2010.05031 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.48550/arXiv.2010.05031 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\429206 | es_ES |
dc.contributor.funder | Huawei Technologies Canada Co., Ltd. | es_ES |