- -

Safety, Security and Privacy in Machine Learning Based Internet of Things

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Safety, Security and Privacy in Machine Learning Based Internet of Things

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Ghulam es_ES
dc.contributor.author Mehmood, Amjad es_ES
dc.contributor.author Carsten, Maple es_ES
dc.contributor.author Epiphaniou, Gregory es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-01-26T19:02:12Z
dc.date.available 2024-01-26T19:02:12Z
dc.date.issued 2022-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202173
dc.description.abstract [EN] Recent developments in communication and information technologies, especially in the internet of things (IoT), have greatly changed and improved the human lifestyle. Due to the easy access to, and increasing demand for, smart devices, the IoT system faces new cyber-physical security and privacy attacks, such as denial of service, spoofing, phishing, obfuscations, jamming, eavesdropping, intrusions, and other unforeseen cyber threats to IoT systems. The traditional tools and techniques are not very efficient to prevent and protect against the new cyber-physical security challenges. Robust, dynamic, and up-to-date security measures are required to secure IoT systems. The machine learning (ML) technique is considered the most advanced and promising method, and opened up many research directions to address new security challenges in the cyber-physical systems (CPS). This research survey presents the architecture of IoT systems, investigates different attacks on IoT systems, and reviews the latest research directions to solve the safety and security of IoT systems based on machine learning techniques. Moreover, it discusses the potential future research challenges when employing security methods in IoT systems. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of Sensor and Actuator Networks es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internet of things (IoT) es_ES
dc.subject Machine learning es_ES
dc.subject Security and privacy es_ES
dc.subject CPS es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Safety, Security and Privacy in Machine Learning Based Internet of Things es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jsan11030038 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Abbas, G.; Mehmood, A.; Carsten, M.; Epiphaniou, G.; Lloret, J. (2022). Safety, Security and Privacy in Machine Learning Based Internet of Things. Journal of Sensor and Actuator Networks. 11(3):1-15. https://doi.org/10.3390/jsan11030038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jsan11030038 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2224-2708 es_ES
dc.relation.pasarela S\507211 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem