Mostrar el registro completo del ítem
Vives-Fuster, J.; Roses Albert, E.; Quiles, E.; Palací, J.; Fuster, T. (2022). Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser. Computational Intelligence and Neuroscience (Online). 2022:1-7. https://doi.org/10.1155/2022/2093086
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202230
Título: | Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser | |
Autor: | Vives-Fuster, Javier Roses Albert, Eduardo Quiles, Emilio Palací, Juan Fuster, Teresa | |
Fecha difusión: |
|
|
Resumen: |
[EN] With this research, we apply range-resolved interferometry (RRI) to the maintenance of wind turbines using some of the most relevant machine-learning (ML) techniques. The degeneration of electrical and mechanical ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1155/2022/2093086 | |
Tipo: |
|