- -

Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser

Mostrar el registro completo del ítem

Vives-Fuster, J.; Roses Albert, E.; Quiles, E.; Palací, J.; Fuster, T. (2022). Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser. Computational Intelligence and Neuroscience (Online). 2022:1-7. https://doi.org/10.1155/2022/2093086

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202230

Ficheros en el ítem

Metadatos del ítem

Título: Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser
Autor: Vives-Fuster, Javier Roses Albert, Eduardo Quiles, Emilio Palací, Juan Fuster, Teresa
Fecha difusión:
Resumen:
[EN] With this research, we apply range-resolved interferometry (RRI) to the maintenance of wind turbines using some of the most relevant machine-learning (ML) techniques. The degeneration of electrical and mechanical ...[+]
Palabras clave: Machine Learning , Laser scanner , Monitoring , Interferometry , Fault Diagnosis
Derechos de uso: Reconocimiento (by)
Fuente:
Computational Intelligence and Neuroscience (Online). (eissn: 1687-5273 )
DOI: 10.1155/2022/2093086
Editorial:
Hindawi Limited
Versión del editor: https://doi.org/10.1155/2022/2093086
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem