- -

Allying topology and shape optimization through machine learning algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Allying topology and shape optimization through machine learning algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Pellicer, David es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.contributor.author Albelda Vitoria, José es_ES
dc.contributor.author CHINESTA SORIA, FRANCISCO JOSE es_ES
dc.contributor.author Ródenas, Juan José es_ES
dc.date.accessioned 2024-01-31T19:02:07Z
dc.date.available 2024-01-31T19:02:07Z
dc.date.issued 2022-07-01 es_ES
dc.identifier.issn 0168-874X es_ES
dc.identifier.uri http://hdl.handle.net/10251/202262
dc.description.abstract [EN] Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of displacements. The most relevant techniques are topology and shape optimization. Topology optimization provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape optimization provides the optimal combination of the parameters that define the required parametrization of the domain's boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that combines the former techniques will define a more general structural optimization framework that will take advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, in this paper, we propose a machine learning-based methodology. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support of Ministry of Economy and Competitiveness (project DPI2017-89816-R) and Ministry of Science, Innovation and Universities (FPU16/07121) of the Government of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Finite Elements in Analysis and Design es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Topology optimization es_ES
dc.subject Mesh refinement es_ES
dc.subject H-adaptivity es_ES
dc.subject Shape optimization es_ES
dc.subject Hybrid optimization es_ES
dc.subject Machine learning es_ES
dc.subject Dimensionality reduction es_ES
dc.subject Locally linear embedding es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Allying topology and shape optimization through machine learning algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.finel.2021.103719 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F07121/ES/FPU16%2F07121/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F046//MODELADO NUMÉRICO AVANZADO EN INGENIERÍA MECÁNICA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Muñoz-Pellicer, D.; Nadal, E.; Albelda Vitoria, J.; Chinesta Soria, FJ.; Ródenas, JJ. (2022). Allying topology and shape optimization through machine learning algorithms. Finite Elements in Analysis and Design. 204:1-19. https://doi.org/10.1016/j.finel.2021.103719 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.finel.2021.103719 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 204 es_ES
dc.relation.pasarela S\462569 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE EDUCACION es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem