Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz-Pellicer, David | es_ES |
dc.contributor.author | Nadal, Enrique | es_ES |
dc.contributor.author | Albelda Vitoria, José | es_ES |
dc.contributor.author | CHINESTA SORIA, FRANCISCO JOSE | es_ES |
dc.contributor.author | Ródenas, Juan José | es_ES |
dc.date.accessioned | 2024-01-31T19:02:07Z | |
dc.date.available | 2024-01-31T19:02:07Z | |
dc.date.issued | 2022-07-01 | es_ES |
dc.identifier.issn | 0168-874X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202262 | |
dc.description.abstract | [EN] Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of displacements. The most relevant techniques are topology and shape optimization. Topology optimization provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape optimization provides the optimal combination of the parameters that define the required parametrization of the domain's boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that combines the former techniques will define a more general structural optimization framework that will take advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, in this paper, we propose a machine learning-based methodology. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support of Ministry of Economy and Competitiveness (project DPI2017-89816-R) and Ministry of Science, Innovation and Universities (FPU16/07121) of the Government of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Finite Elements in Analysis and Design | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Topology optimization | es_ES |
dc.subject | Mesh refinement | es_ES |
dc.subject | H-adaptivity | es_ES |
dc.subject | Shape optimization | es_ES |
dc.subject | Hybrid optimization | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Dimensionality reduction | es_ES |
dc.subject | Locally linear embedding | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Allying topology and shape optimization through machine learning algorithms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.finel.2021.103719 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F07121/ES/FPU16%2F07121/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F046//MODELADO NUMÉRICO AVANZADO EN INGENIERÍA MECÁNICA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Muñoz-Pellicer, D.; Nadal, E.; Albelda Vitoria, J.; Chinesta Soria, FJ.; Ródenas, JJ. (2022). Allying topology and shape optimization through machine learning algorithms. Finite Elements in Analysis and Design. 204:1-19. https://doi.org/10.1016/j.finel.2021.103719 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.finel.2021.103719 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 204 | es_ES |
dc.relation.pasarela | S\462569 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | MINISTERIO DE EDUCACION | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |