- -

Advanced data modeling for industrial drying machine energy optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Advanced data modeling for industrial drying machine energy optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barriga, R. es_ES
dc.contributor.author Romero, M. es_ES
dc.contributor.author Nettleton, D. es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2024-01-31T19:02:34Z
dc.date.available 2024-01-31T19:02:34Z
dc.date.issued 2022-10 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202269
dc.description.abstract [EN] In this article, a digital twin approach is proposed for modeling a pharmaceutical drying process using machine learning techniques, driven by data from different sensors captured in-line. The current difficulty with the drying process is mainly due to the manual operator control for choosing the end-point for terminating the drying step. This results in significant variability, depending on which human operator is supervising, and due to the multi-tasking nature of the job, generally allows a longer processing time to be sure the material is completely dry. The objective is to automate the end-point identification, thus optimizing the processing duration and therefore the overall energy consumption of the process. The point at which the drying is complete is indicated by the temperature difference between the ingoing and outgoing air flow. However, the stochastic nature of the process makes the data modeling a challenge. Firstly, a wide selection of supervised statistical and machine learning algorithms was benchmarked to find the one (CatBoost) which gave the best performance with the data. Next, the set of hyper-parameters was found for CatBoost which gave the optimum performance. This gave a best performance of 0.788 (R-2) fitting of the drying end-point prediction with the real values, for a large number of batches (over 700 K records). This is considered a good result taking into account the high residual of data models for these data and the stochastic nature of the process. The approach has been deployed in a real setting digital twin to control the drying process cutoff in the production plant. The results show the viability of the approach for modeling the process and automatically identifying the optimum end-point for the drying process, thus achieving significant energy savings which have been quantified as approximately 3.7 MWh per year for the pharmaceutical company. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data models es_ES
dc.subject Digital simulation es_ES
dc.subject Energy consumption es_ES
dc.subject Supervised learning algorithms es_ES
dc.subject Machine learning es_ES
dc.subject Predictive control es_ES
dc.subject Pharmaceutical technology es_ES
dc.subject Process modeling es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Advanced data modeling for industrial drying machine energy optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-022-04498-0 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Barriga, R.; Romero, M.; Nettleton, D.; Hassan Mohamed, H. (2022). Advanced data modeling for industrial drying machine energy optimization. The Journal of Supercomputing. 78(15):16820-16840. https://doi.org/10.1007/s11227-022-04498-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-022-04498-0 es_ES
dc.description.upvformatpinicio 16820 es_ES
dc.description.upvformatpfin 16840 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.description.issue 15 es_ES
dc.relation.pasarela S\465014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem