- -

Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marti-Aguado, David es_ES
dc.contributor.author Jimenez-Pastor, Ana Maria es_ES
dc.contributor.author Alberich-Bayarri, Ángel es_ES
dc.contributor.author Rodríguez-Ortega, Alejandro es_ES
dc.contributor.author Alfaro-Cervello, Clara es_ES
dc.contributor.author Mestre-Alagarda, Claudia es_ES
dc.contributor.author Bauza, Mónica es_ES
dc.contributor.author Gallén-Peris, Ana es_ES
dc.contributor.author Valero-Pérez, Elena es_ES
dc.contributor.author Ballester, María Pilar es_ES
dc.contributor.author Gimeno-Torres, Marta es_ES
dc.contributor.author Pérez-Girbés, Alexandre es_ES
dc.contributor.author Benlloch, Salvador es_ES
dc.contributor.author Pérez-Rojas, Judith es_ES
dc.contributor.author Puglia, Víctor es_ES
dc.date.accessioned 2024-01-31T19:03:08Z
dc.date.available 2024-01-31T19:03:08Z
dc.date.issued 2022-02 es_ES
dc.identifier.issn 0033-8419 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202280
dc.description.abstract [EN] Background: Standardized manual region of interest (ROI) sampling strategies for hepatic MRI steatosis and iron quantification are time consuming, with variable results. Purpose: To evaluate the performance of automatic MRI whole-liver segmentation (WLS) for proton density fat fraction (PDFF) and iron estimation (transverse relaxometry [R2*]) versus manual ROI, with liver biopsy as the reference standard. Materials and Methods: This prospective, cross-sectional, multicenter study recruited participants with chronic liver disease who underwent liver biopsy and chemical shift-encoded 3.0-T MRI between January 2017 and January 2021. Biopsy evaluation included histologic grading and digital pathology. MRI liver sampling strategies included manual ROI (two observers) and automatic wholeliver (deep learning algorithm) segmentation for PDFF- and R2*-derived measurements. Agreements between segmentation methods were measured using intraclass correlation coefficients (ICCs), and biases were evaluated using Bland-Altman analyses. Linear regression analyses were performed to determine the correlation between measurements and digital pathology. Results: A total of 165 participants were included (mean age 6 standard deviation, 55 years +/- 12; 96 women; 101 of 165 participants [61%] with nonalcoholic fatty liver disease). Agreements between mean measurements were excellent, with ICCs of 0.98 for both PDFF and R2*. The median bias was 0.5% (interquartile range, 20.4% to 1.2%) for PDFF and 2.7 sec(-1) (interquartile range, 0.2-5.3 sec(-1)) for R2* (P,.001 for both). Margins of error were lower for WLS than ROI-derived parameters (-0.03% for PDFF and 20.3 sec(-1) for R2*). ROI and WLS showed similar performance for steatosis (ROI AUC, 0.96; WLS AUC, 0.97; P = .53) and iron overload (ROI AUC, 0.85; WLS AUC, 0.83; P = .09). Correlations with digital pathology were high (P < .001) between the fat ratio and PDFF (ROI r = 0.89; WLS r = 0.90) and moderate (P < .001) between the iron ratio and R2* (ROI r = 0.65; WLS r = 0.64). Conclusion: Proton density fat fraction and transverse relaxometry measurements derived from MRI automatic whole-liver segmentation (WLS) were accurate for steatosis and iron grading in chronic liver disease and correlated with digital pathology. Automated WLS estimations were higher, with a lower margin of error than manual region of interest estimations. es_ES
dc.description.sponsorship Supported by the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (grant PI19/0380), and Gilead Sciences (grant GLD19/00050). es_ES
dc.language Inglés es_ES
dc.publisher Radiological Society of North America es_ES
dc.relation.ispartof Radiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Density fat fraction es_ES
dc.subject Quantitative imaging biomarkers es_ES
dc.subject Validation es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1148/radiol.2021211027 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI19%2F0380/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gilead Sciences//GLD19%2F00050/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Marti-Aguado, D.; Jimenez-Pastor, AM.; Alberich-Bayarri, Á.; Rodríguez-Ortega, A.; Alfaro-Cervello, C.; Mestre-Alagarda, C.; Bauza, M.... (2022). Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease. Radiology. 302(2):345-354. https://doi.org/10.1148/radiol.2021211027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1148/radiol.2021211027 es_ES
dc.description.upvformatpinicio 345 es_ES
dc.description.upvformatpfin 354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 302 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 34783592 es_ES
dc.relation.pasarela S\462199 es_ES
dc.contributor.funder Gilead Sciences es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem