- -

Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Benajes Calvo, Jesus Vicente es_ES
dc.contributor.advisor Pastor Enguídanos, José Manuel es_ES
dc.contributor.author Olmeda Ramiro, Iván es_ES
dc.date.accessioned 2024-02-01T09:03:24Z
dc.date.available 2024-02-01T09:03:24Z
dc.date.created 2023-12-14
dc.date.issued 2024-01-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202284
dc.description.abstract [ES] En los últimos años, el interés por el desarrollo de motores de aviación limpios y eficientes se ha incrementado debido al impacto perjudicial sobre la salud y el medio ambiente ocasionado por los sistemas de combustión convencionales. En este contexto, la comunidad científica ha ido centrando cada vez más sus esfuerzos en el estudio de la combustión turbulenta y la generación de emisiones contaminantes como las partículas de hollín. Con los recientes avances en lo que respecta a potencia de cálculo, las simulaciones de alta fidelidad emergen como una valiosa alternativa para reproducir y analizar estos fenómenos. En concreto, las simulaciones basadas en el modelado de la turbulencia LES son consideradas como una de las herramientas numéricas más prometedoras a la hora de profundizar en la comprensión sobre los complejos procesos dinámicos que caracterizan el flujo reactivo turbulento y predecir emisiones de hollín en aplicaciones aeronáuticas. En el presente trabajo, se estudia y analiza la combustión turbulenta y producción de hollín en aplicaciones de turbina de gas mediante LES de alta fidelidad. El modelado de la combustión se aborda a través de un método flexible de química tabulada basado en el concepto flamelet, el cual es capaz de representar fenómenos químicos complejos con un coste computacional asequible. Además, se emplea una aproximación Euleriana-Lagrangiana para la descripción de la fase gaseosa y las gotas, de forma que se represente correctamente el flujo reactivo multifásico. Para la predicción de hollín en simulaciones computacionalmente eficientes, se emplea un novedoso enfoque de modelado basada en el método seccional y acoplada al modelo de combustión de química tabulada. Esta estrategia de modelado numérica es utilizada en este trabajo para analizar el proceso de combustión y evaluar sus capacidades para predecir hollín y las características de la llama en quemadores de turbina de gas representativos. En primer lugar, se estudia la combustión de flujo bifásico en una llama atmosférica sin torbellinador con inyección líquida de combustible. Este quemador presenta una estructura doble del frente reactivo y las simulaciones numéricas son capaces de capturar adecuadamente los fenómenos de extinción local que tienen lugar en la zona interna de la llama debido a la interacción de las gotas y la turbulencia con el frente reactivo. Posteriormente, se investiga la combustión y producción de hollín en un quemador presurizado con torbellinador que incluye aire secundario de dilución en el interior de la cámara de combustión. La validación del flujo reactivo y hollín se lleva a cabo tanto en la configuración del quemador con aire secundario como sin el mismo, mostrando unas excelentes capacidades predictivas en ambos casos. La presente estrategia de modelado reproduce de forma precisa el complejo patrón de flujo, la estructura de la llama y la dinámica de generación de hollín, además de que es capaz de proporcionar diferentes distribuciones de tamaño de partícula dependiendo de las variaciones en los procesos de formación y oxidación del hollín. En resumen, los diferentes casos prácticos estudiados permiten consolidar y validar la metodología computacional seguida en la presente tesis. La estrategia de modelado basada en química tabulada propuesta demuestra ser lo suficientemente válida y adecuada para reproducir los complejos fenómenos de la combustión y la formación de hollín, en vista de la consistencia del análisis, las precisas predicciones y la concordancia satisfactoria con las medidas experimentales. es_ES
dc.description.abstract [CA] En els últims anys, l'interés pel desenvolupament de motors d'aviació nets i eficients s'ha incrementat a causa de l'impacte perjudicial sobre la salut i el medi ambient ocasionat pels sistemes de combustió convencionals. En aquest context, la comunitat científica ha anat centrant cada vegada més els seus esforços en l'estudi de la combustió turbulenta i la generació d'emissions contaminants com les partícules de sutge. Amb els recents avanços pel que fa a potència de càlcul, les simulacions d'alta fidelitat emergeixen com una valuosa alternativa per a reproduir i analitzar aquests fenòmens. En concret, les simulacions basades en el modelatge de la turbulència LES són considerades com una de les eines numèriques més prometedores a l'hora d'aprofundir en la comprensió sobre els complexos processos dinàmics que caracteritzen el flux reactiu turbulent i predir emissions de sutge en aplicacions aeronàutiques. En el present treball, s'estudia i analitza la combustió turbulenta i la producció de sutge en aplicacions de turbina de gas mitjançant LES d'alta fidelitat. El modelatge de la combustió s'aborda a través d'un mètode flexible de química tabulada basat en el concepte flamelet, el qual és capaç de representar fenòmens químics complexos amb un cost computacional assequible. A més, s'empra una aproximació Euleriana-Lagrangiana per a la descripció de la fase gasosa i les gotes, de manera que es represente correctament el flux reactiu multifàsic. Per a la predicció de sutge en simulacions computacionalment eficients, s'empra un nou plantejament de modelatge basat en el mètode seccional i acoblat al model de combustió de química tabulada. Aquesta estratègia de modelatge numèrica és utilitzada en aquest treball per a analitzar el procés de combustió en cremadors de turbina de gas representatius, i avaluar les seues capacitats per a predir sutge i les característiques de la flama. En primer lloc, s'estudia la combustió de flux bifàsic en una flama atmosfèrica sense remolinador amb injecció líquida de combustible. Aquest cremador presenta una estructura doble del front reactiu i les simulacions numèriques són capaces de capturar adequadament els fenòmens d'extinció local que tenen lloc en la zona interna de la flama a causa de la interacció de les gotes i la turbulència amb el front reactiu. Posteriorment, s'investiga la combustió i producció de sutge en un cremador pressuritzat amb remolinador que inclou aire secundari de dilució a l'interior de la cambra de combustió. La validació del flux reactiu i sutge es duu a terme tant en la configuració del cremador amb aire secundari com sense aquest, mostrant unes estupendes capacitats predictives en tots dos casos. La present estratègia de modelatge reprodueix de manera precisa el complex patró de flux, l'estructura de la flama i la dinàmica de generació de sutge, a més de que és capaç de proporcionar diferents distribucions de grandària de partícula depenent de les variacions en els processos de formació i oxidació del sutge. En resum, els diferents casos pràctics estudiats permeten consolidar i validar la metodologia computacional seguida en la present tesi. L'estratègia de modelatge basada en química tabulada proposada demostra ser prou vàlida i adequada per a reproduir els complexos fenòmens de la combustió i la formació de sutge, en vista de la consistència de l'anàlisi, les precises prediccions i la concordança satisfactòria amb les mesures experimentals. es_ES
dc.description.abstract [EN] In recent years, interest in the development of efficient and clean aviation powerplants has increased due to the detrimental impact on health and the environment caused by conventional combustion systems. In this context, the research community has increasingly focused its efforts on the study of turbulent combustion and the generation of pollutant emissions such as soot particulates. With recent advances in computational power, high-fidelity simulations emerge as a valuable alternative to reproduce and analyze these phenomena. Specifically, Large Eddy Simulations (LES) are considered as one of the most promising numerical tools to provide further insight into the complex dynamic processes that characterize reactive turbulent flows and predict soot emissions in aeronautical applications. In the present work, turbulent combustion and soot production is studied and analyzed in gas turbine engine applications by means of high-fidelity LES. Combustion modelling is addressed by a flexible tabulated chemistry method based on the flamelet concept, which is able to represent complex chemical phenomena with an affordable computational cost. In addition, an Eulerian- Lagrangian description is employed for the gas phase and droplets in order to correctly represent the multiphase flow in spray flames. A recently developed approach based on the sectional method and coupled to the tabulated chemistry framework is considered for soot prediction in computationally efficient simulations. This numerical modelling framework is used in this work to analyze the combustion process and evaluate its capabilities to predict soot and flame characteristics in representative gas turbine burners. First, an atmospheric non-swirled spray flame is studied in terms of two-phase flow combustion. This burner shows a double reaction front structure and local extinction occurs in the inner layer due to both droplet-flame and turbulence-flame interactions, which is properly characterized by LES. Subsequently, combustion and soot production is investigated in a pressurized swirled model combustor which includes secondary dilution jets inside the combustion chamber. The assessment of the reacting flow field and soot is addressed for burner configurations with and without secondary air, showing excellent predictive capabilities in both cases. The present modelling approach accurately reproduce the complex swirled flow field, flame structure and soot dynamics and is able to provide different particle size distributions depending on the variations of the soot formation and oxidation processes. In summary, the different practical cases studied allow to consolidate and validate the computational methodology followed in the present thesis. The proposed tabulated modelling strategy is sufficiently valid and suitable for reproducing complex combustion and soot formation phenomena, in view of the consistency of the analysis, the accurate predictions and the satisfactory agreement with the experimental measurements. es_ES
dc.description.sponsorship El desarrollo de la presente tesis ha sido posible gracias a una ayuda para la Formación de Profesorado Universitario (FPU 18/03065) perteneciente al Subprograma Estatal de Formación del Ministerio de Ciencia, Innovación y Universidades de España. Además, el trabajo desarrollado está enmarcado en el proyecto ESTiMatE (Emissions SooT ModEl), que ha sido financiado por el consorcio Clean Sky 2 bajo el programa de investigación e innovación Horizonte 2020 de la Unión Europea (acuerdo No. 821418). Las actividades de simulación numérica han sido posibles gracias a la Red Española de Supercomputación y al Centro de Supercomputación de Barcelona por los recursos computacionales proporcionados en MareNostrum, además del grupo PRACE por conceder el acceso a HAWK (GCS, HLRS, Alemania) a través del proyecto SootAero. es_ES
dc.format.extent 283 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Combustion es_ES
dc.subject Soot es_ES
dc.subject Gas turbine combustor es_ES
dc.subject Modeling es_ES
dc.subject Large-eddy simulation es_ES
dc.subject Flamelet generated manifold es_ES
dc.subject Discrete sectional method es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/202284 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/821418/EU/Emissions SooT ModEl/ESTiMatE es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICIU/lan Estatal de Investigación Científica y Técnica y de Innovación (PEICTI) 2017-2020/FPU18/03065/ES/ayudas predoctorales para la Formación del Profesorado Universitario es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Olmeda Ramiro, I. (2023). Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202284 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\13691 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem