- -

Towards generalization for Caenorhabditis elegans detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards generalization for Caenorhabditis elegans detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escobar-Benavides, Santiago es_ES
dc.contributor.author García-Garví, Antonio es_ES
dc.contributor.author Layana-Castro, Pablo Emmanuel es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2024-02-05T19:02:27Z
dc.date.available 2024-02-05T19:02:27Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202339
dc.description.abstract [EN] The nematode Caenorhabditis elegans (C. elegans) is of significant interest for research into neurodegenerative diseases, aging, and drug screening. However, conducting these assays manually is a tedious and time-consuming process. This paper proposes a methodology to achieve a generalist C. elegans detection algorithm, as previous work only focused on dataset-specific detection, tailored exclusively to the characteristics and appearance of the images in a given dataset. The main aim of our study is to achieve a solution that allows for robust detection, regardless of the image-capture system used, with the potential to serve as a basis for the automation of numerous assays. These potential applications include worm counting, worm tracking, motion detection and motion characterization. To train this model, a dataset consisting of a wide variety of appearances adopted by C. elegans has been curated and dataset augmentation methods have been proposed and evaluated, including synthetic image generation. The results show that the model achieves an average precision of 89.5% for a wide variety of C. elegans appearances that were not used during training, thereby validating its generalization capabilities. es_ES
dc.description.sponsorship This study was supported by Universidad Politecnica de Valencia through Instituto de Automatica e Informatica Industrial, FPI Predoctoral contract PRE2019-088214, Ministerio de Universidades (Spain) under grant FPU20/02639 and by European FEDER funds. The authors also thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFEDER/2018/025. ADM Nutrition, Biopolis SL, and Archer Daniels Midland provided support in the supply of C. ele-gans. es_ES
dc.language Inglés es_ES
dc.publisher Chalmers University of Technology es_ES
dc.relation.ispartof Computational and Structural Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject C. elegans es_ES
dc.subject Detection network es_ES
dc.subject YOLO es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Towards generalization for Caenorhabditis elegans detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.csbj.2023.09.039 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//Sistemas de Fabricación Inteligentes para la Industria 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIU//FPU20%2F02639//Ayudas para la Formación del Profesorado Universitario, convocatoria 2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2019-088214//Ayudas para contratos predoctorales para la formación de doctores, convocatoria 2019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Escobar-Benavides, S.; García-Garví, A.; Layana-Castro, PE.; Sánchez Salmerón, AJ. (2023). Towards generalization for Caenorhabditis elegans detection. Computational and Structural Biotechnology Journal. 21:4914-4922. https://doi.org/10.1016/j.csbj.2023.09.039 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.csbj.2023.09.039 es_ES
dc.description.upvformatpinicio 4914 es_ES
dc.description.upvformatpfin 4922 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.identifier.eissn 2001-0370 es_ES
dc.identifier.pmid 37867974 es_ES
dc.identifier.pmcid PMC10589765 es_ES
dc.relation.pasarela S\508248 es_ES
dc.contributor.funder Archer Daniels Midland es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem