Resumen:
|
[ES] El aumento de las emisiones de CO2 en el sector del transporte ha sido continuo en estos últimos años debido principalmente a la carbonización del sector junto al aumento de la flota de vehículos. Este hecho tiene ...[+]
[ES] El aumento de las emisiones de CO2 en el sector del transporte ha sido continuo en estos últimos años debido principalmente a la carbonización del sector junto al aumento de la flota de vehículos. Este hecho tiene efectos adversos en la calidad medioambiental, siendo este gas uno de los principales constituyentes de los gases de efecto invernadero, contribuyendo así al calentamiento global.
Para mitigar las emisiones de CO2, es necesario una política con estrictas regulaciones que conduzcan a la descarbonización del sector del transporte. En este sentido, la electrificación del sector del transporte es la principal vía para conseguir tales objetivos. Lamentablemente, pasar a la electrificación total del sector en un periodo relativamente corto de tiempo presenta ciertas dificultades, como son la alta demanda de electricidad renovable, la baja capacidad de las baterías, y la falta de estaciones de repuesto. Por ello, el uso de combustibles sintéticos obtenidos a partir de fuentes de energía renovables se presenta como una opción complementaria para ayudar a alcanzar los objetivos de reducción de emisiones de CO2, debido a que puede implementarse de forma más rápida.
En la presente tesis doctoral se aborda la caracterización de dos combustibles sintéticos, OME1 y OMEX. Primeramente, se realizó un estudio para caracterizar la estructura de alta y baja temperatura de la llama de ambos combustibles bajo condiciones de referencia de la Engine Combustion Network (ECN) en una instalación de alta presión y temperatura. Posteriormente, se realizaron medidas en un motor óptico, evaluando el efecto que tiene la combinación del uso de mezclas de OMEX/diésel junto a geometrías de pistón no convencionales en la formación de hollín dentro del cilindro. El uso de geometrías de pistón no convencionales se usó debido a que en estudios usando diésel se consiguen reducciones de hollín al mejorar el proceso de mezcla aire-combustible. Por ello, se pretende analizar si ese efecto se obtiene igualmente en presencia de un combustible sintético como es el OMEX.
Las instalaciones en las que se han realizado los distintos estudios presentan accesos ópticos. A través de ellos se han usado distintas técnicas de visualización, tanto basadas en laser, como en la propia radiación emitida por la llama.
Como conclusiones, se podría resumir en que se ha visto que lo ya conocido sobre el proceso de combustión diésel puede ser aplicado a la combustión del OMEX, con el beneficio de que este es un combustible que no presenta estructura de precursores de hollín haciéndolo idóneo para aplicaciones reales de motor. A pesar de las incompatibilidades de este combustible con la infraestructura del motor, esta se soluciona usando mezclas con diésel, que, además, combinándolo con geometrías no convencionales de pistón se obtienen reducciones importantes de formación de hollín dentro del cilindro.
[-]
[CA] L'augment de les emissions de CO¿ en el sector del transport ha sigut continu en aquests últims anys degut principalment a la carbonització del sector al costat de l'augment de la flota de vehicles. Aquest fet té ...[+]
[CA] L'augment de les emissions de CO¿ en el sector del transport ha sigut continu en aquests últims anys degut principalment a la carbonització del sector al costat de l'augment de la flota de vehicles. Aquest fet té efectes adversos en la qualitat mediambiental, sent aquest gas un dels principals constituents dels gasos d'efecte hivernacle, contribuint així al calfament global.
Per a mitigar les emissions de CO¿, és necessari una política amb estrictes regulacions que conduïsquen a la descarbonització del sector del transport. En aquest sentit, l'electrificació del sector del transport és la principal via per a aconseguir tals objectius. Lamentablement, passar a l'electrificació total del sector en un període relativament curt de temps presenta unes certes dificultats, com són l'alta demanda d'electricitat renovable, la baixa capacitat de les bateries, i la falta d'estacions de suministre. Per això, l'ús de combustibles sintètics obtinguts a partir de fonts d'energia renovables es presenta com una opció complementària per a ajudar a aconseguir els objectius de reducció d'emissions de CO¿, pel fet que pot implementar-se de forma més ràpida.
En la present tesi doctoral s'aborda la caracterització de dos combustibles sintètics, OME1 i OMEX. Primerament, es va realitzar un estudi per a caracteritzar l'estructura d'alta i baixa temperatura de la flama de tots dos combustibles sota condicions de referència de la Engine Combustion Network (ECN) en una instal·lació d'alta pressió i temperatura. Posteriorment, es van realitzar mesures en un motor òptic, avaluant l'efecte que té la combinació de l'ús de mescles de OMEX/dièsel al costat de geometries de pistó no convencionals en la formació de sutge dins del cilindre. L'ús de geometries de pistó no convencionals es va usar pel fet que en estudis usant dièsel s'aconsegueixen reduccions de sutge en millorar el procés de mescla aïre-combustible. Per això, es pretén analitzar si aqueix efecte s'obté igualment en presència d'un combustible sintètic com és el OMEX.
Les instal·lacions en les quals s'han realitzat els diferents estudis presenten accessos òptics. A través d'ells s'han usat diferents tècniques de visualització, tant basades en laser, com en la pròpia radiació emesa per la flama.
Com a conclusions, es podria resumir en què s'ha vist que el ja conegut sobre el procés de combustió dièsel pot ser aplicat a la combustió del OMEX, amb el benefici que aquest és un combustible que no presenta estructura de precursors de sutge fent-lo idoni per a aplicacions reals de motor. Malgrat les incompatibilitats d'aquest combustible amb la infraestructura del motor, aquesta se soluciona usant mescles amb dièsel, que, a més, combinant-ho amb geometries no convencionals de pistó s'obtenen reduccions importants de formació de sutge dins del cilindre.
[-]
[EN] The increase in CO2 emissions in the transport sector has been continuous in recent years, mainly due to the carbonization of the sector, together with the increase in the vehicle fleet. This fact has adverse effects ...[+]
[EN] The increase in CO2 emissions in the transport sector has been continuous in recent years, mainly due to the carbonization of the sector, together with the increase in the vehicle fleet. This fact has adverse effects on environmental quality, being this gas is one of the main constituents of greenhouse gases, thus contributing to global warming.
To mitigate CO2 emissions, a policy with strict regulations leading to decarbonizing the transport sector is necessary. In this regard, electrification of the transport sector is the main way to achieve such goals. Unfortunately, moving to full electrification of the sector in a relatively short time presents certain difficulties, such as high demand for renewable electricity, low battery capacity, and lack of refueling stations. Therefore, using synthetic fuels obtained from renewable energy sources is presented as a complementary option to help achieve CO2 emission reduction targets because it can be implemented more quickly.
This doctoral thesis deals with characterizing two synthetic fuels, OME1 and OMEX. First, a study was carried out to characterize both fuels high and low temperature flame structures under reference conditions of the Engine Combustion Network (ECN) in a high-pressure and high-temperature installation. Subsequently, measurements were performed on an optical engine, evaluating the effect of combining the use of OMEX/diesel blends and unconventional piston geometries on in-cylinder soot formation. Non-conventional piston geometries were used because, in diesel studies, soot reductions are achieved by improving the air-fuel mixing process. Therefore, it is intended to analyze whether this effect is also obtained in the presence of a synthetic fuel such as OMEX.
The facilities where the different studies have been carried out have optical accesses. Through them, different visualization techniques have been used based on laser and the radiation emitted by the flame.
In conclusion, it could be summarized that it has been seen that what is already known about the diesel combustion process can be applied to the combustion of OMEX, with the benefit that this is a fuel that does not present a soot precursor structure, making it suitable for real engine applications. Despite the incompatibilities of this fuel with the engine infrastructure, this is solved by using blends with diesel, which, in addition, by combining it with non-conventional piston geometries, significant reductions in in-cylinder soot formation are obtained.
[-]
|