- -

Few-View CT Image Reconstruction via Least-Squares Methods: Assessment and Optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Few-View CT Image Reconstruction via Least-Squares Methods: Assessment and Optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author CHILLARÓN-PÉREZ, MÓNICA es_ES
dc.contributor.author Vidal-Gimeno, Vicente-Emilio es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.contributor.author Quintana-Ortí, Gregorio es_ES
dc.date.accessioned 2024-02-08T19:02:50Z
dc.date.available 2024-02-08T19:02:50Z
dc.date.issued 2024-02-01 es_ES
dc.identifier.issn 0029-5639 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202464
dc.description.abstract [EN] The use of iterative algebraic methods applied to the reconstruction of computed tomography (CT) medical images is proliferating to reconstruct high-quality CT images using far fewer views than through analytical methods. This would imply reducing the dose of X-rays applied to patients who require this medical test. Least-squares methods are a promising approach to reconstruct the images with few projections obtaining high quality. In addition, since these techniques involve a high computational load, it is necessary to develop efficient methods that make use of high-performance-computing tools to accelerate reconstructions. In this paper, three least-squares methods are analyzed-Least-Squares Model Based (LSMB), Least-Squares QR (LSQR), and Least-Squares Minimal Residual (LSMR)-to determine whether the LSMB method provides faster convergence and thus lower computational times. Moreover, a block version of both the LSQR method and the LSMR method was implemented. With them, multiple right-hand sides (multiple slices) can be solved at the same time, taking advantage of the parallelism obtained with the implementation of the methods using the Intel Math Kernel Library. The two implementations are compared in terms of convergence, time, and quality of the images obtained, reducing the number of projections and combining them with a regularization and acceleration technique. The experiments show how the implementations are scalable and obtain images of good quality from a reduced number of views, with the LSQR method being better suited for this application. es_ES
dc.description.sponsorship This research has been supported by "Universitat Politecnica de Valencia" and is part of the TED2021-131091B-I00 project, funded by MCIN/AEI/10.13039/501100011033 and by the "European Union NextGenerationEU/PRTR." es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Nuclear Science and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computed tomography es_ES
dc.subject Reconstruction es_ES
dc.subject Image quality es_ES
dc.subject Least squares es_ES
dc.subject Algebraic methods es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Few-View CT Image Reconstruction via Least-Squares Methods: Assessment and Optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00295639.2023.2199677 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-131091B-I00//PROCESAMIENTO DIGITAL DE IMAGENES DE TC MEDIANTE TECNICAS DE HPC E IA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Chillarón-Pérez, M.; Vidal-Gimeno, V.; Verdú Martín, GJ.; Quintana-Ortí, G. (2024). Few-View CT Image Reconstruction via Least-Squares Methods: Assessment and Optimization. Nuclear Science and Engineering. 198(2):193-206. https://doi.org/10.1080/00295639.2023.2199677 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00295639.2023.2199677 es_ES
dc.description.upvformatpinicio 193 es_ES
dc.description.upvformatpfin 206 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 198 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\502957 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem