- -

A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baeza-Delgado, Carlos es_ES
dc.contributor.author Cerdá Alberich, Leonor es_ES
dc.contributor.author Carot Sierra, José Miguel es_ES
dc.contributor.author Veiga-Canuto, Diana es_ES
dc.contributor.author Martinez de las Heras, Blanca es_ES
dc.contributor.author Raza, Ben es_ES
dc.contributor.author Marti-Bonmati, Luis es_ES
dc.date.accessioned 2024-02-09T09:40:01Z
dc.date.available 2024-02-09T09:40:01Z
dc.date.issued 2022-06-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202493
dc.description.abstract [EN] Background Estimating the required sample size is crucial when developing and validating clinical prediction models. However, there is no consensus about how to determine the sample size in such a setting. Here, the goal was to compare available methods to define a practical solution to sample size estimation for clinical predictive models, as applied to Horizon 2020 PRIMAGE as a case study. Methods Three different methods (Riley's; "rule of thumb" with 10 and 5 events per predictor) were employed to calculate the sample size required to develop predictive models to analyse the variation in sample size as a function of different parameters. Subsequently, the sample size for model validation was also estimated. Results To develop reliable predictive models, 1397 neuroblastoma patients are required, 1060 high-risk neuroblastoma patients and 1345 diffuse intrinsic pontine glioma (DIPG) patients. This sample size can be lowered by reducing the number of variables included in the model, by including direct measures of the outcome to be predicted and/or by increasing the follow-up period. For model validation, the estimated sample size resulted to be 326 patients for neuroblastoma, 246 for high-risk neuroblastoma, and 592 for DIPG. Conclusions Given the variability of the different sample sizes obtained, we recommend using methods based on epidemiological data and the nature of the results, as the results are tailored to the specific clinical problem. In addition, sample size can be reduced by lowering the number of parameter predictors, by including direct measures of the outcome of interest. es_ES
dc.description.sponsorship This work is funded by the HORIZON2020 PRIMAGE project (RIA, topic SC1DTH 07-2018), from the EU Framework Programme for Research and Innovation of the European Commission. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof European Radiology Experimental es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sample size calculation es_ES
dc.subject Clinical predictive models es_ES
dc.subject PRIMAGE es_ES
dc.subject Paediatric oncology es_ES
dc.subject Radiology es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s41747-022-00276-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826494/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Baeza-Delgado, C.; Cerdá Alberich, L.; Carot Sierra, JM.; Veiga-Canuto, D.; Martinez De Las Heras, B.; Raza, B.; Marti-Bonmati, L. (2022). A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data. European Radiology Experimental. 6(1). https://doi.org/10.1186/s41747-022-00276-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s41747-022-00276-y es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2509-9280 es_ES
dc.identifier.pmid 35641659 es_ES
dc.identifier.pmcid PMC9156610 es_ES
dc.relation.pasarela S\471671 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem