- -

Hybrid genetic algorithm to minimize scheduling cost with unequal and job dependent earliness tardiness cost

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid genetic algorithm to minimize scheduling cost with unequal and job dependent earliness tardiness cost

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bari, Prasad es_ES
dc.contributor.author Karande, Prasad es_ES
dc.contributor.author Bag, Vaidehi es_ES
dc.date.accessioned 2024-02-12T07:48:50Z
dc.date.available 2024-02-12T07:48:50Z
dc.date.issued 2024-01-31
dc.identifier.uri http://hdl.handle.net/10251/202554
dc.description.abstract [EN] This article presents two combinatorial genetic algorithms (GA), unequal earliness tardiness-GA (UET-GA) and job-dependent earliness tardiness-GA (JDET-GA) for the single-machine scheduling problem to minimize earliness tardiness (ET) cost. The sequence of jobs produced in basic UET and JDET as a chromosome is added to the random population of GA. The best sequence from each epoch is also injected as a population member in the subsequent epoch. The proposed improvement seeks to achieve convergence in less time to search for an optimal solution. Although the GA has been implemented very successfully on many different types of optimization problems, it has been learnt that the algorithm has a search ability difficulty that makes computations NP-hard for types of optimization problems, such as permutation-based optimization problems. The use of a plain random population initialization results in this flaw. To reinforce the random population initialization, the proposed enhancement is utilized to obtain convergence and find a promising solution. The cost is further significantly lowered offering the due date as a decision variable with JDET-GA. Multiple tests were run on well-known single-machine benchmark examples to demonstrate the efficacy of the proposed methodology, and the results are displayed by comparing them with the fundamental UET and JDET approaches with a notable improvement in cost reduction. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Earliness es_ES
dc.subject Tardiness es_ES
dc.subject Cost es_ES
dc.subject Common Due Date es_ES
dc.subject Genetic Algorithm es_ES
dc.title Hybrid genetic algorithm to minimize scheduling cost with unequal and job dependent earliness tardiness cost es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2024.19277
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bari, P.; Karande, P.; Bag, V. (2024). Hybrid genetic algorithm to minimize scheduling cost with unequal and job dependent earliness tardiness cost. International Journal of Production Management and Engineering. 12(1):19-30. https://doi.org/10.4995/ijpme.2024.19277 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2024.19277 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\19277 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem