- -

An adaptive differential evolution algorithm to solve the multi-compartment vehicle routing problem: A case of cold chain transportation problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An adaptive differential evolution algorithm to solve the multi-compartment vehicle routing problem: A case of cold chain transportation problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sankul, Supaporn es_ES
dc.contributor.author Supattananon, Naratip es_ES
dc.contributor.author Akararungruangkul, Raknoi es_ES
dc.contributor.author Wichapa, Narong es_ES
dc.date.accessioned 2024-02-12T08:14:11Z
dc.date.available 2024-02-12T08:14:11Z
dc.date.issued 2024-01-31
dc.identifier.uri http://hdl.handle.net/10251/202561
dc.description.abstract [EN] This research paper introduces an adaptive differential evolution algorithm (ADE algorithm) designed to address the multi-compartment vehicle routing problem (MCVRP) for cold chain transportation of a case study of twentyeight customers in northeastern Thailand. The ADE algorithm aims to minimize the total cost, which includes both the expenses for traveling and using the vehicles. In general, this algorithm consists of four steps: (1) The first step is to generate the initial solution. (2) The second step is the mutation process. (3) The third step is the recombination process, and the final step is the selection process. To improve the original DE algorithm, the proposed algorithm increases the number of mutation equations from one to four. Comparing the outcomes of the proposed ADE algorithm with those of LINGO software and the original DE based on the numerical examples In the case of small-sized problems, both the proposed ADE algorithm and other methods produce identical results that align with the global optimal solution. Conversely, for larger-sized problems, it is demonstrated that the proposed ADE algorithm effectively solves the MCVRP in this case. The proposed ADE algorithm is more efficient than Lingo software and the original DE, respectively, in terms of total cost. The proposed ADE algorithm, adapted from the original, proves advantageous for solving MCVRPs with large datasets due to its simplicity and effectiveness. This research contributes to advancing cold chain logistics with a practical solution for optimizing routing in multi-compartment vehicles. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Adaptive differential evolution algorithm es_ES
dc.subject Cold chain transportation network es_ES
dc.subject Metaheuristics es_ES
dc.subject Multi-compartment vehicle routing problem es_ES
dc.title An adaptive differential evolution algorithm to solve the multi-compartment vehicle routing problem: A case of cold chain transportation problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2024.19928
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sankul, S.; Supattananon, N.; Akararungruangkul, R.; Wichapa, N. (2024). An adaptive differential evolution algorithm to solve the multi-compartment vehicle routing problem: A case of cold chain transportation problem. International Journal of Production Management and Engineering. 12(1):91-104. https://doi.org/10.4995/ijpme.2024.19928 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2024.19928 es_ES
dc.description.upvformatpinicio 91 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\19928 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem