- -

PLS: A versatile tool for industrial process improvement and optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PLS: A versatile tool for industrial process improvement and optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrer, Alberto es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.contributor.author Vidal-Puig, Santiago es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Zarzo Castelló, Manuel es_ES
dc.date.accessioned 2024-02-12T08:47:36Z
dc.date.available 2024-02-12T08:47:36Z
dc.date.issued 2008-12 es_ES
dc.identifier.issn 1524-1904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202570
dc.description.abstract [EN] Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least-squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop in automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. es_ES
dc.description.sponsorship This research was partially supported by the Spanish Government (MICYT) and the European Union (RDE funds) under grant CTM2005-06919-CO3-03/TECNO. The authors would like to thank E. Molto (Instituto Valenciano de Investigaciones Agrarias-IVIA, Spain) for the orange images data set. The authors are also grateful to CALAGUA research group (University of Valencia and Technical University of Valencia, Spain) for providing them with the SBR data set. Finally, the authors also wish to acknowledge the anonymous reviewers for their valuable comments and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Applied Stochastic Models in Business and Industry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Classification es_ES
dc.subject Fault diagnosis es_ES
dc.subject Monitoring es_ES
dc.subject Multivariate image analysis es_ES
dc.subject PLS time series es_ES
dc.subject Soft sensor es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title PLS: A versatile tool for industrial process improvement and optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/asmb.716 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//CTM2005-06919-C03-03/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Ferrer, A.; Aguado García, D.; Vidal-Puig, S.; Prats-Montalbán, JM.; Zarzo Castelló, M. (2008). PLS: A versatile tool for industrial process improvement and optimization. Applied Stochastic Models in Business and Industry. 24(6):551-567. https://doi.org/10.1002/asmb.716 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/asmb.716 es_ES
dc.description.upvformatpinicio 551 es_ES
dc.description.upvformatpfin 567 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\33985 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem