Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.contributor.author | Aguado García, Daniel | es_ES |
dc.contributor.author | Vidal-Puig, Santiago | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Zarzo Castelló, Manuel | es_ES |
dc.date.accessioned | 2024-02-12T08:47:36Z | |
dc.date.available | 2024-02-12T08:47:36Z | |
dc.date.issued | 2008-12 | es_ES |
dc.identifier.issn | 1524-1904 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202570 | |
dc.description.abstract | [EN] Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least-squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop in automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. | es_ES |
dc.description.sponsorship | This research was partially supported by the Spanish Government (MICYT) and the European Union (RDE funds) under grant CTM2005-06919-CO3-03/TECNO. The authors would like to thank E. Molto (Instituto Valenciano de Investigaciones Agrarias-IVIA, Spain) for the orange images data set. The authors are also grateful to CALAGUA research group (University of Valencia and Technical University of Valencia, Spain) for providing them with the SBR data set. Finally, the authors also wish to acknowledge the anonymous reviewers for their valuable comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Applied Stochastic Models in Business and Industry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Fault diagnosis | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Multivariate image analysis | es_ES |
dc.subject | PLS time series | es_ES |
dc.subject | Soft sensor | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | PLS: A versatile tool for industrial process improvement and optimization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/asmb.716 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICYT//CTM2005-06919-C03-03/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Ferrer, A.; Aguado García, D.; Vidal-Puig, S.; Prats-Montalbán, JM.; Zarzo Castelló, M. (2008). PLS: A versatile tool for industrial process improvement and optimization. Applied Stochastic Models in Business and Industry. 24(6):551-567. https://doi.org/10.1002/asmb.716 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/asmb.716 | es_ES |
dc.description.upvformatpinicio | 551 | es_ES |
dc.description.upvformatpfin | 567 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\33985 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Ciencia y Tecnología | es_ES |