- -

Aprendizaje profundo y biomarcadores de imagen en el estudio de enfermedades metabólicas y hepáticas a partir de resonancia magnética y tomografía computarizada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aprendizaje profundo y biomarcadores de imagen en el estudio de enfermedades metabólicas y hepáticas a partir de resonancia magnética y tomografía computarizada

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Alberich Bayarri, Ángel es_ES
dc.contributor.advisor Bosch Roig, Ignacio es_ES
dc.contributor.author Jimenez Pastor, Ana Maria es_ES
dc.date.accessioned 2024-02-12T20:14:24Z
dc.date.available 2024-02-12T20:14:24Z
dc.date.created 2023-12-22
dc.date.issued 2024-02-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202602
dc.description.abstract [ES] El síndrome metabólico se define como un conjunto de trastornos (e.g., niveles elevados de presión arterial, niveles elevados de glucosa en sangre, exceso de grasa abdominal o niveles elevados de colesterol o triglicéridos) que afectan a un individuo al mismo tiempo. La presencia de uno de estos factores no implica un riesgo elevado para la salud, sin embargo, presentar varios de ellos aumenta la probabilidad de sufrir enfermedades secundarias como la enfermedad cardiovascular o la diabetes tipo II. Las enfermedades difusas hepáticas son todas aquellas enfermedades que afectan a las células funcionales del hígado, los hepatocitos, alterando, de este modo, la función hepática. En estos procesos, los hepatocitos se ven sustituidos por adipocitos y tejido fibroso. La enfermedad de hígado graso no alcohólico es una afección reversible originada por la acumulación de triglicéridos en los hepatocitos. El alcoholismo, la obesidad, y la diabetes son las causas más comunes de esta enfermedad. Este estado del hígado es reversible si se cambia la dieta del paciente, sin embargo, si este no se cuida, la enfermedad puede ir avanzando hacia estadios más severos, desencadenando fibrosis, cirrosis e incluso carcinoma hepatocelular (CHC). La temprana detección de todos estos procesos es de gran importancia en la mejora del pronóstico de los pacientes. Así, las técnicas de imagen en combinación con modelos computacionales permiten caracterizar el tejido mediante la extracción de parámetros objetivos, conocidos como biomarcadores de imagen, relacionados con estos procesos fisiológicos y patológicos, permitiendo una estadificación más precisa de las enfermedades. Además, gracias a las técnicas de inteligencia artificial, se pueden desarrollar algoritmos de segmentación automática que permitan realizar dicha caracterización de manera completamente automática y acelerar, de este modo, el flujo radiológico. Por todo esto, en la presente tesis doctoral, se presenta una metodología para el desarrollo de modelos de segmentación y cuantificación automática, siendo aplicada a tres casos de uso. Para el estudio del síndrome metabólico se propone un método de segmentación automática de la grasa visceral y subcutánea en imágenes de tomografía computarizada (TC), para el estudio de la enfermedad hepática difusa se propone un método de segmentación hepática y cuantificación de la grasa y hierro hepáticos en imágenes de resonancia magnética (RM), y, finalmente, para el estudio del CHC, se propone un método de segmentación hepática y cuantificación de los descriptores de la curva de perfusión en imágenes de RM. Todo esto se ha integrado en una plataforma que permite su integración en la práctica clínica. Así, se han adaptado los algoritmos desarrollados para ser ejecutados en contenedores Docker de forma que, dada una imagen de entrada, generen los parámetros cuantitativos de salida junto con un informe que resuma dichos resultados; se han implementado herramientas para que los usuarios puedan interactuar con las segmentaciones generadas por los algoritmos de segmentación automática desarrollados; finalmente, éstos se han implementado de forma que generen dichas segmentaciones en formatos estándar como DICOM RT Struct o DICOM Seg, para garantizar la interoperabilidad con el resto de sistemas sanitarios. es_ES
dc.description.abstract [CA] La síndrome metabòlica es defineix com un conjunt de trastorns (e.g., nivells elevats de pressió arterial, nivells elevats de glucosa en sang, excés de greix abdominal o nivells elevats de colesterol o triglicèrids) que afecten un individu al mateix temps. La presència d'un d'aquests factors no implica un risc elevat per a la salut, no obstant això, presentar diversos d'ells augmenta la probabilitat de patir malalties secundàries com la malaltia cardiovascular o la diabetis tipus II. Les malalties difuses hepàtiques són totes aquelles malalties que afecten les cèl·lules funcionals del fetge, els hepatòcits, alterant, d'aquesta manera, la funció hepàtica. En aquests processos, els hepatòcits es veuen substituïts per adipòcits i teixit fibrós. La malaltia de fetge gras no alcohòlic és una afecció reversible originada per l'acumulació de triglicèrids en els hepatòcits. L'alcoholisme, l'obesitat, i la diabetis són les causes més comunes d'aquesta malaltia. Aquest estat del fetge és reversible si es canvia la dieta del pacient, no obstant això, si aquest no es cuida, la malaltia pot anar avançant cap a estadis més severs, desencadenant fibrosis, cirrosis i fins i tot carcinoma hepatocel·lular (CHC). La primerenca detecció de tots aquests processos és de gran importància en la millora del pronòstic dels pacients. Així, les tècniques d'imatge en combinació amb models computacionals permeten caracteritzar el teixit mitjançant l'extracció paràmetres objectius, coneguts com biomarcadores d'imatge, relacionats amb aquests processos fisiològics i patològics, permetent una estratificació més precisa de les malalties. A més, gràcies a les tècniques d'intel·ligència artificial, es poden desenvolupar algorismes de segmentació automàtica que permeten realitzar aquesta caracterització de manera completament automàtica i accelerar, d'aquesta manera, el flux radiològic. Per tot això, en la present tesi doctoral, es presenta una metodologia per al desenvolupament de models de segmentació i quantificació automàtica, sent aplicada a tres casos d'ús. Per a l'estudi de la síndrome metabòlica es proposa un mètode de segmentació automàtica del greix visceral i subcutani en imatges de tomografia computada (TC), per a l'estudi de la malaltia hepàtica difusa es proposa un mètode segmentació hepàtica i quantificació del greix i ferro hepàtics en imatges de ressonància magnètica (RM), i, finalment, per a l'estudi del CHC, es proposa un mètode de segmentació hepàtica i quantificació dels descriptors de la corba de perfusió en imatges de RM. Tot això s'ha integrat en una plataforma que permet la seua integració en la pràctica clínica. Així, s'han adaptat els algorismes desenvolupats per a ser executats en contenidors Docker de manera que, donada una imatge d'entrada, generen els paràmetres quantitatius d'eixida juntament amb un informe que resumisca aquests resultats; s'han implementat eines perquè els usuaris puguen interactuar amb les segmentacions generades pels algorismes de segmentació automàtica desenvolupats; finalment, aquests s'han implementat de manera que generen aquestes segmentacions en formats estàndard com DICOM RT Struct o DICOM Seg, per a garantir la interoperabilitat amb la resta de sistemes sanitaris. es_ES
dc.description.abstract [EN] Metabolic syndrome is defined as a group of disorders (e.g., high blood pressure, high blood glucose levels, excess abdominal fat, or high cholesterol or triglyceride levels) that affect an individual at the same time. The presence of one of these factors does not imply an elevated health risk; however, having several of them increases the probability of secondary diseases such as cardiovascular disease or type II diabetes. Diffuse liver diseases are all those diseases that affect the functional cells of the liver, the hepatocytes, thus altering liver function. In these processes, the hepatocytes are replaced by adipocytes and fibrous tissue. Non-alcoholic fatty liver disease is a reversible condition caused by the accumulation of triglycerides in hepatocytes. Alcoholism, obesity, and diabetes are the most common causes of this disease. This liver condition is reversible if the patient's diet is changed; however, if the patient is not cared for, the disease can progress to more severe stages, triggering fibrosis, cirrhosis and even hepatocellular carcinoma (HCC). Early detection of all these processes is of great importance in improving patient prognosis. Thus, imaging techniques in combination with computational models allow tissue characterization by extracting objective parameters, known as imaging biomarkers, related to these physiological and pathological processes, allowing a more accurate statification of diseases. Moreover, thanks to artificial intelligence techniques, it is possible to develop automatic segmentation algorithms that allow to perform such characterization in a fully automatic way and thus accelerate the radiological workflow. Therefore, in this PhD, a methodology for the development of automatic segmentation and quantification models is presented and applied to three use cases. For the study of metabolic syndrome, a method of automatic segmentation of visceral and subcutaneous fat in computed tomography (CT) images is proposed; for the study of diffuse liver disease, a method of liver segmentation and quantification of hepatic fat and iron in magnetic resonance imaging (MRI) is proposed; and, finally, for the study of HCC, a method of liver segmentation and quantification of perfusion curve descriptors in MRI is proposed. All this has been integrated into a platform that allows its integration into clinical practice. Thus, the developed algorithms have been adapted to be executed in Docker containers so that, given an input image, they generate the quantitative output parameters together with a report summarizing these results; tools have been implemented so that users can interact with the segmentations generated by the automatic segmentation algorithms developed; finally, these have been implemented so that they generate these segmentations in standard formats such as DICOM RT Struct or DICOM Seg, to ensure interoperability with other health systems. es_ES
dc.format.extent 268 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automatic segmentation es_ES
dc.subject Metabolism es_ES
dc.subject Diffuse liver disease es_ES
dc.subject Clinical decision support system es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject Radiology es_ES
dc.subject Image biomarkers es_ES
dc.subject Medical imaging es_ES
dc.subject Imagen médica es_ES
dc.subject Biomarcador de imagen es_ES
dc.subject Radiología es_ES
dc.subject Aprendizaje profundo es_ES
dc.subject Redes neuronales convolucionales es_ES
dc.subject Sistema de apoyo a la decisión clínica es_ES
dc.subject Enfermedad difusa hepática es_ES
dc.subject Metabolismo es_ES
dc.subject Inteligencia artificial es_ES
dc.subject Segmentación automática es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Aprendizaje profundo y biomarcadores de imagen en el estudio de enfermedades metabólicas y hepáticas a partir de resonancia magnética y tomografía computarizada es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/202602 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Jimenez Pastor, AM. (2023). Aprendizaje profundo y biomarcadores de imagen en el estudio de enfermedades metabólicas y hepáticas a partir de resonancia magnética y tomografía computarizada [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202602 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\13376 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem