- -

Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Grande-Fidalgo, Alejandro es_ES
dc.contributor.author Calpe Maravilla, Javier es_ES
dc.contributor.author Redón Segrera, Mónica es_ES
dc.contributor.author Millán-Navarro, Carlos es_ES
dc.contributor.author Soria Olivas, Emilio es_ES
dc.date.accessioned 2024-02-16T19:00:20Z
dc.date.available 2024-02-16T19:00:20Z
dc.date.issued 2021-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202695
dc.description.abstract [EN] One of the most powerful techniques to diagnose cardiovascular diseases is to analyze the electrocardiogram (ECG). To increase diagnostic sensitivity, the ECG might need to be acquired using an ambulatory system, as symptoms may occur during a patient¿s daily life. In this paper, we propose using an ambulatory ECG (aECG) recording device with a low number of leads and then estimating the views that would have been obtained with a standard ECG location, reconstructing the complete Standard 12-Lead System, the most widely used system for diagnosis by cardiologists. Four approaches have been explored, including Linear Regression with ECG segmentation and Artificial Neural Networks (ANN). The best reconstruction algorithm is based on ANN, which reconstructs the actual ECG signal with high precision, as the results bring a high accuracy (RMS Error < 13 ¿V and CC > 99.7%) for the set of patients analyzed in this paper. This study supports the hypothesis that it is possible to reconstruct the Standard 12-Lead System using an aECG recording device with less leads. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cardiovascular diseases es_ES
dc.subject Electrocardiogram es_ES
dc.subject Ambulatory monitoring es_ES
dc.subject Lead reconstruction es_ES
dc.subject Artificial neural network es_ES
dc.subject Standard 12-lead system es_ES
dc.title Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21165542 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Grande-Fidalgo, A.; Calpe Maravilla, J.; Redón Segrera, M.; Millán-Navarro, C.; Soria Olivas, E. (2021). Lead Reconstruction Using Artificial Neural Networks for Ambulatory ECG Acquisition. Sensors. 21(16). https://doi.org/10.3390/s21165542 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21165542 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 34450984 es_ES
dc.identifier.pmcid PMC8401493 es_ES
dc.relation.pasarela S\445257 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem