- -

Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Haseeb, Khalid es_ES
dc.contributor.author Rehman, Amjad es_ES
dc.contributor.author Saba, Tanzila es_ES
dc.contributor.author Bahaj, Saeed Ali es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-02-19T19:00:52Z
dc.date.available 2024-02-19T19:00:52Z
dc.date.issued 2022-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202710
dc.description.abstract [EN] Wireless networks and the Internet of things (IoT) have proven rapid growth in the development and management of smart environments. These technologies are applied in numerous research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the observing field. However, the constraint resources of distributed battery-powered sensors decrease the energy efficiency of the IoT network and increase the delay in receiving the network data on users' devices. It is observed that many solutions are proposed to overcome the energy deficiency in smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces the compromising threats in the presence of anonymous devices and increases the trustworthiness of the IoT-enabled communication system with the support of machine learning. The proposed work was tested and analyzed using broad simulation-based experiments and demonstrated the significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%, data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic network configurations. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wireless systems es_ES
dc.subject Mobile sensors es_ES
dc.subject D2D es_ES
dc.subject Technological development es_ES
dc.subject Internet of things es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s22062115 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Haseeb, K.; Rehman, A.; Saba, T.; Bahaj, SA.; Lloret, J. (2022). Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors. Sensors. 22(6). https://doi.org/10.3390/s22062115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s22062115 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 35336285 es_ES
dc.identifier.pmcid PMC8954068 es_ES
dc.relation.pasarela S\506759 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem