- -

The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author PEDRERO, J.F. es_ES
dc.contributor.author De Rosario Martínez, Helios es_ES
dc.contributor.author Medina Ripoll, Enrique es_ES
dc.contributor.author Garrido Jaen, Jose David es_ES
dc.contributor.author Serra-Añó, Pilar es_ES
dc.contributor.author Mollà-Casanova, Sara es_ES
dc.contributor.author Lopez Pascual, Juan es_ES
dc.date.accessioned 2024-02-22T19:02:00Z
dc.date.available 2024-02-22T19:02:00Z
dc.date.issued 2023-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202746
dc.description.abstract [EN] Falls in older people are a major health concern as the leading cause of disability and the second most common cause of accidental death. We developed a rapid fall risk assessment based on a combination of physical performance measurements made with an inertial sensor embedded in a smartphone. This study aimed to evaluate and validate the reliability and accuracy of an easy-to-use smartphone fall risk assessment by comparing it with the Physiological Profile Assessment (PPA) results. Sixty-five participants older than 55 performed a variation of the Timed Up and Go test using smartphone sensors. Balance and gait parameters were calculated, and their reliability was assessed by the (ICC) and compared with the PPAs. Since the PPA allows classification into six levels of fall risk, the data obtained from the smartphone assessment were categorised into six equivalent levels using different parametric and nonparametric classifier models with neural networks. The F1 score and geometric mean of each model were also calculated. All selected parameters showed ICCs around 0.9. The best classifier, in terms of accuracy, was the nonparametric mixed input data model with a 100% success rate in the classification category. In conclusion, fall risk can be reliably assessed using a simple, fast smartphone protocol that allows accurate fall risk classification among older people and can be a useful screening tool in clinical settings. es_ES
dc.description.sponsorship Activity developed within the framework of several fundings: i. CERVERA Network financed by the Ministry of Science and Innovation through the Center for Industrial Technological Development charged to the General State Budgets 2021, and the Recovery, Transformation, and Resilience Plan (CER20211003); ii. State Plan for Scientific and Technical Research and Innovation (Knowledge Generation) co-financed by EU FEDER funds (PID2021-125694OB-I00); iii. Consolidated research groups program from Generalitat Valenciana, Conselleria d¿Innovació, Universitats, Ciència i Societat: CIAICO/2021/215; iv. Talent attraction program from Universitat de València (INV19-01-13-07). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fall risk es_ES
dc.subject Smartphone es_ES
dc.subject Inertial sensors es_ES
dc.subject Physiological Profile Assessment es_ES
dc.subject Timed Up and Go es_ES
dc.title The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23146567 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125694OB-I00/ES/SISTEMA ROBOTICO PARALELO CON CONTROL BASADO EN MODELO MUSCULO-ESQUELETICO PARA LA MONITORIZACION Y ENTRENAMIENTO DEL SISTEMA PROPIOCEPTIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//INV19-01-13-07/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//CIAICO%2F2021%2F215/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.description.bibliographicCitation Pedrero, J.; De Rosario Martínez, H.; Medina Ripoll, E.; Garrido Jaen, JD.; Serra-Añó, P.; Mollà-Casanova, S.; Lopez Pascual, J. (2023). The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment. Sensors. 23(14). https://doi.org/10.3390/s23146567 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23146567 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 14 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 37514860 es_ES
dc.identifier.pmcid PMC10385364 es_ES
dc.relation.pasarela S\497744 es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem